Publications by authors named "Kimberly A Gwin"

The open reading frame 8 (ORF8) protein, encoded by the SARS-CoV-2 virus after infection, stimulates monocytes/macrophages to produce pro-inflammatory cytokines. We hypothesized that a positive ex vivo monocyte response to ORF8 protein pre-COVID-19 would be associated with subsequent severe Coronavirus disease 2019 (COVID-19). We tested ORF8 ex vivo on peripheral blood mononuclear cells from 26 anonymous healthy blood donors and measured intracellular cytokine/ chemokine levels in monocytes by flow cytometry.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD19 CD5 clonal B lymphocytes in the blood, bone marrow, and peripheral lymphoid organs. Treatment options for patients range from historical chemoimmunotherapy (CIT) to small molecule inhibitors targeting pro-survival pathways in leukemic B cells, such as the Bruton's tyrosine kinase inhibitor ibrutinib (IBR). Using biobanked blood samples obtained pre-therapy and at standard response evaluation timepoints, we performed an in-depth evaluation of the blood innate and adaptive immune compartments between pentostatin-based CIT and IBR and looked for correlations with clinical sequelae.

View Article and Find Full Text PDF

Despite extensive research, the specific factor associated with SARS-CoV-2 infection that mediates the life-threatening inflammatory cytokine response in patients with severe COVID-19 remains unidentified. Herein we demonstrate that the virus-encoded Open Reading Frame 8 (ORF8) protein is abundantly secreted as a glycoprotein and in symptomatic patients with COVID-19. ORF8 specifically binds to the NOD-like receptor family pyrin domain-containing 3 (NLRP3) in CD14 monocytes to induce inflammasomal cytokine/chemokine responses including IL1β, IL8, and CCL2.

View Article and Find Full Text PDF

TNFα is implicated in chronic lymphocytic leukemia (CLL) immunosuppression and disease progression. TNFα is constitutively produced by CLL B cells and is a negative regulator of bone marrow (BM) myelopoiesis. Here, we show that co-culture of CLL B cells with purified normal human hematopoietic stem and progenitor cells (HSPCs) directly altered protein levels of the myeloid and erythroid cell fate determinants PU.

View Article and Find Full Text PDF

The consequences of immune dysfunction in B-chronic lymphocytic leukemia (CLL) likely relate to the incidence of serious recurrent infections and second malignancies that plague CLL patients. The well-described immune abnormalities are not able to consistently explain these complications. Here, we report bone marrow (BM) hematopoietic dysfunction in early and late stage untreated CLL patients.

View Article and Find Full Text PDF

Background: The serine threonine kinase Pim-1 has documented roles in hematopoietic progenitor and B cell precursor proliferation and survival. Pim-1 is a molecular target of the transcription factor Hoxa9. Previous studies showed that Pim-1 deficiency phenocopied the hematopoietic progenitor defect in hoxa9-/- mice and forced expression of Pim-1 normalized the in vitro proliferation defect inherent to hoxa9-/- hematopoietic progenitors.

View Article and Find Full Text PDF

B lymphopoiesis in bone marrow (BM) is critical for maintaining a diverse peripheral B cell pool to fight infection and establish lifelong immunity. The generation of immature B cells is reduced in Flt3-ligand (FL-/-) mice leading to deficiencies in splenic B cells. Here, we sought to understand the cellular basis of the spleen B cell deficiency in FL-/- mice.

View Article and Find Full Text PDF

Flt3 signaling plays a crucial role in regulating the survival and differentiation of lymphoid progenitors into B cell precursors (BCPs) in bone marrow. To define further the role of Flt3 signaling in lymphoid progenitor survival, mice deficient in Flt3 ligand that also expressed a Bcl2 transgene (Eμ-bcl2tg flt3l(-/-)) were generated. Intracellular flow cytometry established transgene expression in primitive hematopoietic progenitors, including lineage-negative Sca-1(+) c-kit(+) (LSK(+)) CD27(-) cells enriched for functional hematopoietic stem cells.

View Article and Find Full Text PDF

B-cell-biased lymphoid progenitors (BLPs) and Pre-pro B cells lie at a critical juncture between B cell specification and commitment. However, both of these populations are heterogenous, which hampers investigation into the molecular changes that occur as lymphoid progenitors commit to the B cell lineage. Here, we demonstrate that there are PDCA-1(+)Siglec H(+) plasmacytoid dendritic cells (pDCs) that co-purify with BLPs and Pre-pro B cells, which express little or no CD11c or Ly6C.

View Article and Find Full Text PDF

Hoxa9 and Flt3 signaling are individually important for the generation of lymphoid lineage precursors from multipotent hematopoietic progenitors (MPP) in bone marrow. Mice deficient for Hoxa9, Flt3, or Flt3 ligand (FL) have reduced numbers of lymphoid-primed multipotential progenitors (LMPP), common lymphoid progenitors (CLP), and B/T cell precursors. Hoxa9 regulates lymphoid development, in part, through transcriptional regulation of Flt3.

View Article and Find Full Text PDF