Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism.
View Article and Find Full Text PDFBackground: The diagnosis of primary ciliary dyskinesia (PCD) is difficult and requires a combination of clinical features, nasal nitric oxide testing, cilia ultrastructural analysis by electron microscopy (EM), and genetics. A recently described cytoplasmic ultrastructural change termed "ciliary inclusions" was reported to be diagnostic of PCD; however, no supporting evidence of PCD was provided. In this study, we sought to confirm, or refute, the diagnosis of PCD in subjects with "ciliary inclusions" on EM.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disease caused by mutations in over 40 different genes. Individuals with PCD caused by mutations in (radial spoke head 1 homolog) have been reported to have a milder phenotype than other individuals with PCD, as evidenced by a lower incidence of neonatal respiratory distress, higher nasal nitric oxide concentrations, and better lung function. To better understand genotype-phenotype relationships in PCD, we have characterized a mutant mouse model with a deletion of .
View Article and Find Full Text PDFUnderstanding how expression of airway secretory mucins MUC5B and MUC5AC is regulated in health and disease is important to elucidating the pathogenesis of mucoobstructive respiratory diseases. The transcription factor SPDEF (sterile α-motif pointed domain epithelial specific transcription factor) is a key regulator of MUC5AC, but its role in regulating MUC5B in health and in mucoobstructive lung diseases is unknown. Characterization of Spdef-deficient mice upper and lower airways demonstrated region-specific, Spdef-dependent regulation of basal Muc5b expression.
View Article and Find Full Text PDFHuman subjects with pseudohypoaldosteronism-1 because of loss-of-function mutations in epithelial sodium channel (ENaC) subunits exhibit meibomian gland (MG) dysfunction. A conditional βENaC MG knockout (KO) mouse model was generated to elucidate the pathogenesis of absent ENaC function in the MG and associated ocular surface disease. βENaC MG KO mice exhibited a striking age-dependent, female-predominant MG dysfunction phenotype, with white toothpaste-like secretions observed obstructing MG orifices at 7 weeks of age.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2018
The epithelial Na channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, β, and γ, which are differentially expressed (α > β > γ). Airway-targeted overexpression of the β subunit results in Na hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
April 2016
Purpose: We establish novel primary rat meibomian gland (MG) cell culture systems and explore the ion transport activities of the rat MG.
Methods: Freshly excised rat MG tissues were characterized as follows: (1) mRNA expression of selected epithelial ion channels/transporters were measured by RT-PCR, (2) localization of epithelial sodium channel (ENaC) mRNAs was performed by in situ hybridization, and (3) protein expression and localization of βENaC, the Na+/K+/Cl- cotransporter (NKCC), and the Na+/K+ ATPase were evaluated by immunofluorescence. Primary isolated rat MG cells were cocultured with 3T3 feeder cells and a Rho-associated kinase (ROCK) inhibitor (Y-27632) for expansion.
Resident immune cells (e.g., macrophages [MΦs]) and airway mucus clearance both contribute to a healthy lung environment.
View Article and Find Full Text PDFAbstract Diagnosis of primary ciliary dyskinesia (PCD) by identification of dynein arm loss in transmission electron microscopy (TEM) images can be confounded by high background noise due to random electron-dense material within the ciliary matrix, leading to diagnostic uncertainty even for experienced morphologists. The authors developed a novel image analysis tool to average the axonemal peripheral microtubular doublets, thereby increasing microtubular signal and reducing random background noise. In a randomized, double-blinded study that compared two experienced morphologists and three different diagnostic approaches, they found that use of this tool led to improvement in diagnostic TEM test performance.
View Article and Find Full Text PDFDefects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain.
View Article and Find Full Text PDFRas is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown.
View Article and Find Full Text PDFRationale: Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder characterised by oto-sino-pulmonary disease and situs abnormalities (Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently recognised to have PCD have ultrastructural defects of cilia; however, some patients have clinical manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a few patients with biallelic mutations in dynein axonemal heavy chain 11 (DNAH11).
Objectives: To test further for mutant DNAH11 as a cause of PCD, DNAH11 was sequenced in patients with a PCD clinical phenotype, but no known genetic aetiology.
Calcineurin, a heterodimer composed of the catalytic (CnaA) and regulatory (CnaB) subunits, plays key roles in growth, virulence and stress responses of fungi. To investigate the contribution of CnaA and CnaB to hyphal growth and septation, ΔcnaB and ΔcnaAΔcnaB strains of Aspergillus fumigatus were constructed. CnaA colocalizes to the contractile actin ring early during septation and remains at the centre of the mature septum.
View Article and Find Full Text PDFSynaptotagmin 2 (Syt2) functions as a low affinity, fast exocytic Ca(2+) sensor in neurons, where it is activated by Ca(2+) influx through voltage-gated channels. Targeted insertion of lacZ into the mouse syt2 locus reveals expression in mucin-secreting goblet cells of the airways. In these cells, rapid Ca(2+) entry from the extracellular medium does not contribute significantly to stimulated secretion (Davis, C.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2007
In normal nasal epithelium, the olfactory receptor neurons (ORNs) are continuously replaced through the differentiation of progenitor cells. The olfactory epithelium (OE) of the cystic fibrosis (CF) mouse appears normal at birth, yet by 6 mo of age, a marked dysmorphology of sustentacular cells and a dramatic reduction in olfactory receptor neurons are evident. Electroolfactograms revealed that the odor-evoked response in 30-day-old CF mice was reduced approximately 45%; in older CF mice, a approximately 70% reduction was observed compared with the wild type (WT) response.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
April 2004
Airway epithelial stem cells are not well characterized. To examine clonal growth potential, we diluted single, viable B6.129S7-Gtrosa26 (Rosa26) mouse tracheal epithelial cells that constitutively express -galactosidase into non-Rosa26 cells in an air-liquid interface cell culture model; 1.
View Article and Find Full Text PDF