Publications by authors named "Kimberley T McLean"

Introduction: The spread of artemisinin resistant parasites is of global concern and highlights the need to identify new antimalarials for future treatments. Azithromycin, a macrolide antibiotic used clinically against malaria, kills parasites two mechanisms: 'delayed death' by inhibiting the bacterium-like ribosomes of the apicoplast, and 'quick-killing' that kills rapidly across the entire blood stage development.

Methods: Here, 22 azithromycin analogues were explored for delayed death and quick-killing activities against (the most virulent human malaria) and (a monkey parasite that frequently infects humans).

View Article and Find Full Text PDF

Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest.

View Article and Find Full Text PDF

is the leading cause of bacterial paediatric meningitis after the neonatal period worldwide, but the bacterial factors and pathophysiology that drive pneumococcal meningitis are not fully understood. In this work, we have identified differences in raffinose utilization by isolates of identical serotype and sequence type from the blood and cerebrospinal fluid (CSF) of a single pediatric patient with meningitis. The blood isolate displayed defective raffinose metabolism, reduced transcription of the raffinose utilization pathway genes, and an inability to grow when raffinose was the sole carbon source.

View Article and Find Full Text PDF

The LuxS protein, encoded by , is required for the production of autoinducer 2 (AI-2) in . The AI-2 molecule serves as a quorum sensing signal, and thus regulates cellular processes such as carbohydrate utilisation and biofilm formation, as well as impacting virulence. The role of in biology and lifestyle has been predominantly assessed in the laboratory strain D39.

View Article and Find Full Text PDF

Acinetobacter baumannii is one of the world's most problematic nosocomial pathogens. The combination of its intrinsic resistance and ability to acquire resistance markers allow this organism to adjust to antibiotic treatment. Despite being the primary barrier against antibiotic stress, our understanding of the A.

View Article and Find Full Text PDF

(the pneumococcus) is a formidable human pathogen that is capable of asymptomatically colonizing the nasopharynx. Progression from colonization to invasive disease involves adaptation to distinct host niches, which vary markedly in the availability of key nutrients such as sugars. We previously reported that cell-cell signaling via the autoinducer 2 (AI-2)/LuxS quorum-sensing system boosts the capacity of to utilize galactose as a carbon source by upregulation of the Leloir pathway.

View Article and Find Full Text PDF

Streptococcus pneumoniae is a genetically diverse human-adapted pathogen commonly carried asymptomatically in the nasopharynx. We have recently shown that a single nucleotide polymorphism (SNP) in the raffinose pathway regulatory gene rafR accounts for a difference in the capacity of clonally-related strains to cause localised versus systemic infection. Using dual RNA-seq, we show that this SNP affects expression of bacterial genes encoding multiple sugar transporters, and fine-tunes carbohydrate metabolism, along with extensive rewiring of host transcriptional responses to infection, particularly expression of genes encoding cytokine and chemokine ligands and receptors.

View Article and Find Full Text PDF