Publications by authors named "Kimberley M Zorn"

Article Synopsis
  • Researchers identified broad-spectrum anti-infective agents from a library of 456 compounds through a high-throughput screening program, focusing on compounds effective against specific parasite species.
  • Using machine learning, they characterized and synthesized 44 compounds showing strong antiparasitic properties with minimal toxicity, highlighting one promising lead with a unique chemical structure.
  • The study utilized advanced chemoinformatic and machine learning tools to handle complex data, facilitating the selection and optimization of compounds for further biological and toxicological evaluation.
View Article and Find Full Text PDF

Neuroblastoma (NB) is the second leading extracranial solid tumor of early childhood with about two-thirds of cases presenting before the age of 5, and accounts for roughly 15 percent of all pediatric cancer fatalities in the United States. Treatments against NB are lacking, resulting in a low survival rate in high-risk patients. A repurposing approach using already approved or clinical stage compounds can be used for diseases for which the patient population is small, and the commercial market limited.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a dangerous human pathogen and no antiviral drugs have been approved to date. The chalcones are a group of small molecules that are found in a number of different plants, including Angelica keiskei Koidzumi, also known as ashitaba. To examine chalcone anti-ZIKV activity, three chalcones, 4-hydroxyderricin (4HD), xanthoangelol (XA), and xanthoangelol-E (XA-E), were purified from a methanol-ethyl acetate extract from A.

View Article and Find Full Text PDF

The prevalence of infections by nontuberculous mycobacteria is increasing, having surpassed tuberculosis in the United States and much of the developed world. Nontuberculous mycobacteria occur naturally in the environment and are a significant problem for patients with underlying lung diseases such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. Current treatment regimens are lengthy, complicated, toxic and they are often unsuccessful as seen by disease recurrence.

View Article and Find Full Text PDF

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, -d-N-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters.

View Article and Find Full Text PDF

With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for testing by several groups. These have led to a growing database of molecules with activity against the virus.

View Article and Find Full Text PDF

Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by infected mosquitoes. Large epidemics of YF occur when the virus is introduced into heavily populated areas with high mosquito density and low vaccination coverage. The lack of a specific small molecule drug treatment against YF as well as for homologous infections, such as zika and dengue, highlights the importance of these flaviviruses as a public health concern.

View Article and Find Full Text PDF

In the wake of the COVID-19 pandemic, drug repurposing has been highlighted for rapid introduction of therapeutics. Proposed drugs with activity against SARS-CoV-2 include compounds with positive charges at physiologic pH, making them potential targets for the organic cation secretory transporters of kidney and liver, i.e.

View Article and Find Full Text PDF

The growing quantity of public and private data sets focused on small molecules screened against biological targets or whole organisms provides a wealth of drug discovery relevant data. This is matched by the availability of machine learning algorithms such as Support Vector Machines (SVM) and Deep Neural Networks (DNN) that are computationally expensive to perform on very large data sets with thousands of molecular descriptors. Quantum computer (QC) algorithms have been proposed to offer an approach to accelerate quantum machine learning over classical computer (CC) algorithms, however with significant limitations.

View Article and Find Full Text PDF

The ability to calculate whether small molecules will cross the blood-brain barrier (BBB) is an important task for companies working in neuroscience drug discovery. For a decade, scientists have relied on relatively simplistic rules such as Pfizer's central nervous system multiparameter optimization models (CNS-MPO) for guidance during the drug selection process. In parallel, there has been a continued development of more sophisticated machine learning models that utilize different molecular descriptors and algorithms; however, these models represent a "black box" and are generally less interpretable.

View Article and Find Full Text PDF
Article Synopsis
  • Equilibrative nucleoside transporters (ENTs) are important in how nucleoside analog drugs are absorbed and distributed in the body, with implications for treating diseases like cancer and viral infections.
  • The study created 3D models to better understand how different drugs interact with ENT1 and ENT2, revealing unique characteristics for substrates and inhibitors.
  • NBMPR, an ENT-specific inhibitor, significantly reduced the accumulation of drugs like mizoribine and ribavirin in cells, while darunavir showed limited interaction, helping to inform future drug development and selection processes.
View Article and Find Full Text PDF

Background: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests.

View Article and Find Full Text PDF

Although the widespread epidemic of Zika virus (ZIKV) and its neurological complications are well-known there are still no approved drugs available to treat this arboviral disease or vaccine to prevent the infection. Flavonoids from Pterogyne nitens have already demonstrated anti-flavivirus activity, although their target is unknown. In this study, we virtually screened an in-house database of 150 natural and semi-synthetic compounds against ZIKV NS2B-NS3 protease (NS2B-NS3p) using docking-based virtual screening, as part of the OpenZika project.

View Article and Find Full Text PDF

Rare diseases impact hundreds of millions of individuals worldwide. However, few therapies exist to treat the rare disease population because financial resources are limited, the number of patients affected is low, bioactivity data is often nonexistent, and very few animal models exist to support preclinical development efforts. Sialidosis is an ultrarare lysosomal storage disorder in which mutations in the NEU1 gene result in the deficiency of the lysosomal enzyme sialidase-1.

View Article and Find Full Text PDF

Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite . Drug discovery for antischistosomal compounds predominantly employs whole organism (phenotypic) screens against two developmental stages of , post-infective larvae (somules) and adults. We generated two rule books and associated scoring systems to normalize 3898 phenotypic data points to enable machine learning.

View Article and Find Full Text PDF

Machine learning methods are attracting considerable attention from the pharmaceutical industry for use in drug discovery and applications beyond. In recent studies, we and others have applied multiple machine learning algorithms and modeling metrics and, in some cases, compared molecular descriptors to build models for individual targets or properties on a relatively small scale. Several research groups have used large numbers of datasets from public databases such as ChEMBL in order to evaluate machine learning methods of interest to them.

View Article and Find Full Text PDF

Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2.

View Article and Find Full Text PDF

Tuberculosis is caused by and is a deadly disease resulting in the deaths of approximately 1.5 million people with 10 million infections reported in 2018. Recently, a key condensation step in the synthesis of mycolic acids was shown to require β-ketoacyl-ACP synthase (KasA).

View Article and Find Full Text PDF

Viruses are obligate intracellular parasites and have evolved to enter the host cell. To gain access they come into contact with the host cell through an initial adhesion, and some viruses from different genus may use heparan sulfate proteoglycans for it. The successful inhibition of this early event of the infection by synthetic molecules has always been an attractive target for medicinal chemists.

View Article and Find Full Text PDF

Aromatase, or cytochrome P450 19A1, catalyzes the aromatization of androgens to estrogens within the body. Changes in the activity of this enzyme can produce hormonal imbalances that can be detrimental to sexual and skeletal development. Inhibition of this enzyme can occur with drugs and natural products as well as environmental chemicals.

View Article and Find Full Text PDF