Publications by authors named "Kimberley Lema"

Host-associated microbiota are critical for eukaryotic host functioning, to the extent that hosts and their associated microbial communities are often considered "holobionts". Most studies of holobionts have focused on descriptive approaches or have used model systems, usually in the laboratory, to understand host-microbiome interactions. To advance our understanding of host-microbiota interactions and their wider ecological impacts, we need experimental frameworks that can explore causation in non-model hosts, which often have highly diverse microbiota, and in their natural ecological setting (i.

View Article and Find Full Text PDF

Settlement of many benthic marine invertebrates is stimulated by bacterial biofilms, although it is not known if patterns of settlement reflect microbial communities that are specific to discrete habitats. Here, we characterized the taxonomic and functional gene diversity (16S rRNA gene amplicon and metagenomic sequencing analyses), as well as the specific bacterial abundances, in biofilms from diverse nearby and distant locations, both inshore and offshore, and tested them for their ability to induce settlement of the biofouling tubeworm Hydroides elegans, an inhabitant of bays and harbours around the world. We found that compositions of the bacterial biofilms were site specific, with the greatest differences between inshore and offshore sites.

View Article and Find Full Text PDF

Untangling the functional basis of divergence between closely related species is a step toward understanding species dynamics within communities at both the evolutionary and ecological scales. We investigated cellular (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how different genetic and environmental factors affect toxin production in three Pseudo-nitzschia species.
  • A strong impact of low phosphate levels was found to increase domoic acid production while reducing cell density, regardless of nitrogen and silicate levels.
  • Inter-species variations highlighted P. australis as the most toxic, with moderate intra-specific variations indicating that isolation time may affect toxin production but overall, genetic differences had little influence on nutrient response.
View Article and Find Full Text PDF

Diazotrophic bacteria are instrumental in generating biologically usable forms of nitrogen by converting abundant dinitrogen gas (N2) into available forms, such as ammonium. Although nitrogen is crucial for coral growth, direct observation of associations between diazotrophs and corals has previously been elusive. We applied fluorescence in situ hybridization (FISH) and nanoscale secondary ion mass spectrometry to observe the uptake of (15)N-enriched diazotrophic Vibrio sp.

View Article and Find Full Text PDF

Early establishment of coral-microbial symbioses is fundamental to the fitness of corals, but comparatively little is known about the onset and succession of bacterial communities in their early life history stages. In this study, bacterial associates of the coral Acropora millepora were characterized throughout the first year of life, from larvae and 1-week-old juveniles reared in laboratory conditions in the absence of the dinoflagellate endosymbiont Symbiodinium to field-outplanted juveniles with established Symbiodinium symbioses, and sampled at 2 weeks and at 3, 6 and 12 months. Using an amplicon pyrosequencing approach, the diversity of both nitrogen-fixing bacteria and of bacterial communities overall was assessed through analysis of nifH and 16S rRNA genes, respectively.

View Article and Find Full Text PDF

Diazotrophic bacteria potentially play an important functional role in supplying fixed nitrogen to the coral holobiont, but the value of such a partnership depends on the stability of the association. Here we evaluate the composition of diazotroph assemblages associated with the coral Acropora millepora throughout four seasons and at two reefs, an inshore and an offshore (mid-shelf) reef on the Great Barrier Reef, Australia. Amplicon pyrosequencing of the nifH gene revealed that diazotrophs are ubiquitous members of the bacterial community associated with A.

View Article and Find Full Text PDF

The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats.

View Article and Find Full Text PDF