Oxygen is an important component of the environment of the cumulus-oocyte complex (COC), both in vivo within the ovarian follicle and during in vitro oocyte maturation (IVM). Cumulus cells have a key role in supporting oocyte development, and cumulus cell function and gene expression are known to be altered when the environment of the COC is perturbed. Oxygen-regulated gene expression is mediated through the actions of the transcription factors, the hypoxia-inducible factors (HIFs).
View Article and Find Full Text PDFPhosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitors are an emerging class of anti-cancer agents. Here, we tested the hypothesis that the dual PI3K/mTOR inhibitor, PI103, could synergize with the chemotherapeutic agent, 5-fluorouracil (5-FU) by inhibiting E2F1, thymidylate synthase (TS) and enhancing DNA damage. Drug combination effects were assessed in gastric cancer cells using the median-effect equation.
View Article and Find Full Text PDFHypoxia inducible factors (HIFs) are transcription factors that mediate physiological responses to hypoxia. Hypoxia is established as the major inducer of HIFs, but stimuli such as transition metals and hormones also induce HIF target genes. Whilst the ovarian granulosa cell layer is known to be avascular and the follicle is vascularised via the thecal cell layer, little is known about the role of hypoxia or HIFs in regulating ovarian function.
View Article and Find Full Text PDF