Background: Despite do-it-yourself automated insulin delivery being an unapproved method of insulin delivery, an increasing number of people with type 1 diabetes (T1D) worldwide are choosing to use Loop, a do-it-yourself automated insulin delivery system.
Objective: In this study, we aimed to assess glycemic outcomes, safety, and the perceived impact on quality of life (QOL) in a local Edmonton cohort of known Loop users.
Methods: An observational study of adults with T1D who used Loop was performed.
Introduction: User designed Automated Insulin Delivery systems (AID), termed Do-It-Yourself (DIY) AID include; AndroidAPS, OpenAPS and Loop. These unregulated systems provide challenges for healthcare providers worldwide, with potential legal and ethical barriers to supporting their use. We performed a scoping review of the currently available literature surrounding DIY AID systems, specifically to highlight the evidence available to facilitate healthcare providers to support persons with diabetes who may benefit from DIY AID.
View Article and Find Full Text PDFDistinct morphological changes associated with the complex development cycle of the obligate intracellular bacterial pathogen Chlamydia trachomatis have been historically well characterized by microscopy. A number of temporally regulated genes have been characterized previously, suggesting that the chlamydial developmental cycle is regulated at the transcriptional level. This hypothesis was tested by microarray analysis in which the entire C.
View Article and Find Full Text PDF