Publications by authors named "Kimberley B Craven"

Activation of cyclic nucleotide-modulated channels such as CNG and HCN channels is promoted by ligand-induced conformational changes in their C-terminal regions. The primary intersubunit interface of these C termini includes two salt bridges per subunit, formed between three residues (one positively charged and two negatively charged amino acids) that we term the SB triad. We previously hypothesized that the SB triad is formed in the closed channel and breaks when the channel opens.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-gated (HCN1-4) channels play an important role in the regulation of neuronal rhythmicity. In the present study we describe the mutation analysis of HCN1 and HCN2 in 84 unrelated patients with idiopathic generalized epilepsy (IGE). Several functional variants were identified including the amino acid substitution R527Q in HCN2 exon 5.

View Article and Find Full Text PDF

Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the pore.

View Article and Find Full Text PDF

On stimulation, rhodopsin, the light-sensing protein in the rod cells of the retina, is phosphorylated at several sites on its C terminus as the first step in deactivation. We have developed a mass spectrometry-based method to quantify the kinetics of phosphorylation at each site in vivo. After exposing either a freshly dissected mouse retina or the eye of an anesthetized mouse to a flash of light, phosphorylation and dephosphorylation reactions are terminated by rapidly homogenizing the retina or enucleated eye in 8 M urea.

View Article and Find Full Text PDF