IEEE J Biomed Health Inform
February 2025
An automated analysis of respiratory sounds using Deep Learning (DL) plays a pivotal role in the early detection of lung diseases. However, current DL methods often examine the spatial and temporal characteristics of respiratory sounds in isolation, which inherently limit their potential. This study proposes a novel DL framework that captures spatial features through convolution operations and exploits the spatiotemporal correlations of these features using temporal convolution networks.
View Article and Find Full Text PDF