The decision to extubate patients on invasive mechanical ventilation is critical; however, clinician performance in identifying patients to liberate from the ventilator is poor. Machine Learning-based predictors using tabular data have been developed; however, these fail to capture the wide spectrum of data available. Here, we develop and validate a deep learning-based model using routinely collected chest X-rays to predict the outcome of attempted extubation.
View Article and Find Full Text PDFObjectives: Machine learning algorithms can outperform older methods in predicting clinical deterioration, but rigorous prospective data on their real-world efficacy are limited. We hypothesized that real-time machine learning generated alerts sent directly to front-line providers would reduce escalations.
Design: Single-center prospective pragmatic nonrandomized clustered clinical trial.
Background: Early prediction of the need for invasive mechanical ventilation (IMV) in patients hospitalized with COVID-19 symptoms can help in the allocation of resources appropriately and improve patient outcomes by appropriately monitoring and treating patients at the greatest risk of respiratory failure. To help with the complexity of deciding whether a patient needs IMV, machine learning algorithms may help bring more prognostic value in a timely and systematic manner. Chest radiographs (CXRs) and electronic medical records (EMRs), typically obtained early in patients admitted with COVID-19, are the keys to deciding whether they need IMV.
View Article and Find Full Text PDF