Publications by authors named "Kim Young-Joon"

At the end of each developmental stage, insects perform the ecdysis sequence, an innate behavior necessary for shedding the old cuticle. Ecdysis triggering hormones (ETHs) initiate these behaviors through direct actions on the CNS. Here, we identify the ETH receptor (ETHR) gene in the moth Manduca sexta, which encodes two subtypes of GPCR (ETHR-A and ETHR-B).

View Article and Find Full Text PDF

Background: At the end of each molt, insects shed their old cuticle by performing the ecdysis sequence, an innate behavior consisting of three steps: pre-ecdysis, ecdysis, and postecdysis. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system.

Results: To elucidate neural substrates underlying the ecdysis sequence, we identified neurons expressing ETH receptors (ETHRs) in Drosophila.

View Article and Find Full Text PDF

The turbidity oscillations of self-oscillating polymers in the Belousov-Zhabotinsky (BZ) reaction system depending on the crown ether receptors contained in the polymer network have been studied. The three monomers are copolymerized, namely, N-isopropylacrylamide, the metal catalyst monomer for the BZ reaction, and the crown ether receptor monomer, to prepare the self-oscillating polymers used in this study. The turbidity oscillations are characterized by monitoring the transmittance of the polymer solution in the BZ reaction system at a specific wavelength of 570 nm.

View Article and Find Full Text PDF

A field colony of Tetranychus urticae (Koch) (Acari: Tetranychidae) resistant to pyridaben was selected with pyridaben successively for 20 generations to produce the PR-20 strain. Resistance and multiple resistance levels of the PR-20 strain to 15 acaricides were determined using a spray bioassay. The PR-20 strain was extremely resistant to pyridaben (resistance ratio [RR] = 240].

View Article and Find Full Text PDF

In insects, steroid hormones named ecdysteroids elicit molting and metamorphosis. The prothoracic gland (PG) is a predominant source of ecdysteroids, where their biosynthesis (ecdysteroidogenesis) is regulated by several neuropeptides. Here, we report that FMRFamide-related peptides (FaRPs) regulate ecdysteroidogenesis through direct innervation of the PG in the silkworm Bombyx mori.

View Article and Find Full Text PDF

This study was conducted to identify the epidemiology of face burns in Korean adults caused by flambé drinks in the hope of developing preventive programs. We reviewed the medical records of 25 patients with burns caused by flame drinks that were admitted to the Hallym Burn Centre, Hangang Sacred Heart Hospital, Seoul, Korea, during the 30-month period of July 2002 to December 2004. The injuries occurred while drinking and spilling the whisky on the flame (68%) during the hours of social gathering and festivity.

View Article and Find Full Text PDF

Background: The effect of triclosan plus the cationic detergent cetylpyridinium chloride (CPC) was evaluated for prostaglandin inhibition in human gingival fibroblasts. Since triclosan has previously been shown to inhibit proinflammatory cytokine induced prostaglandin E2 (PGE2) production, we wanted to determine if triclosan, in the presence of CPC, could enhance these effects.

Methods: Initial studies determined that both triclosan and CPC were cytotoxic to human gingival fibroblasts in concentrations exceeding 1.

View Article and Find Full Text PDF

Mediator was first identified because of its activity in activator-stimulated transcription in vivo and in vitro. Later, biochemical fractionation led to the co-purification of the multi-subunit Mediator complex and RNA polymerase II (pol II). Results of these studies suggested a model whereby transcription-activator proteins, which bind to specific gene regulatory sequences, recruit both Mediator and pol II as a holoenzyme in a one-step mechanism.

View Article and Find Full Text PDF

Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens.

View Article and Find Full Text PDF

Previous gene expression profiling studies in Drosophila have provided clues for understanding the aging process at the gene expression level. For a detailed understanding, studies of specific regions of the body are necessary. We therefore employed microarray analysis to examine gene expression changes in the Drosophila head during aging.

View Article and Find Full Text PDF

IkappaB kinase (IKK) and Jun N-terminal kinase (Jnk) signaling modules are important in the synthesis of immune effector molecules during innate immune responses against lipopolysaccharide and peptidoglycan. However, the regulatory mechanisms required for specificity and termination of these immune responses are unclear. We show here that crosstalk occurred between the drosophila Jnk and IKK pathways, which led to downregulation of each other's activity.

View Article and Find Full Text PDF

A field colony of the Two-spotted spider mite, Tetranychus urticae (Koch), resistant to fenpyroximate was further selected with fenpyroximate 5SC for 20 generations at a selection pressure of 30-50% mortality (designated as FR-20 strain). Resistance and cross-resistance levels of the FR-20 strain to 18 acaricides were determined using a spray method. The FR-20 strain was extremely resistant to fenpyroximate [resistance ratio (RR) 252].

View Article and Find Full Text PDF

Transcriptional activators interact with diverse proteins and recruit transcriptional machinery to the activated promoter. Recruitment of the Mediator complex by transcriptional activators is usually the key step in transcriptional activation. However, it is unclear how Mediator recognizes different types of activator proteins.

View Article and Find Full Text PDF

Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation.

View Article and Find Full Text PDF

Tetracyclines have been shown to regulate matrix metalloproteinase (MMP) expression in numerous cell types with various periodontal disease models. MMP-13, or collagenase-3, has been shown to be induced by a number of osteotropic cytokines and hormones in osteoblastic cells. In this study, we studied MMP-13 gene expression and regulation in osteoblasts by chemically modified tetracyclines (CMTs).

View Article and Find Full Text PDF

Corazonin is a highly conserved neuropeptide hormone of wide-spread occurrence in insects yet is associated with no universally recognized function. After discovery of the corazonin receptor in Drosophila, we identified its ortholog in the moth, Manduca sexta, as a prelude to physiological studies. The corazonin receptor cDNA in M.

View Article and Find Full Text PDF

In bone biology, interleukin (IL)-6 is an autocrine/paracrine cytokine which can induce osteoclasts formation and activation to help mediate inflammatory bone destruction. Previous studies have shown that tetracycline and its derivatives have potentially beneficial therapeutic effects in the prevention and treatment of metabolic bone diseases by modulating osteoblast and osteoclast activities. Our previous studies indicated that non-antimicrobial chemically modified tetracyclines (CMTs) can dose-dependently inhibit IL-1 beta-induced IL-6 secretion in osteoblastic cells.

View Article and Find Full Text PDF

Abstract A case of aplastic anemia with a 16-year history of systemic lupus erythematosus (SLE) is described. The diagnosis of aplastic anemia was established by bone marrow biopsy. Aplastic anemia is an extremely rare complication of SLE.

View Article and Find Full Text PDF

Understanding the factors that control osteoblastic behavior is centrally important in establishment of successful osseointegration. Pharmacogenetic control of the osteoblast to increase the mineral content around dental implants may offer a unique advantage to clinicians in improving osseointegration success and decreasing time before mechanical loading. This in vitro pilot study has screened for bioactive peptides derived from bone morphogenetic protein 7 (BMP-7) (also called osteogenic protein 1 [OP-1]).

View Article and Find Full Text PDF

Insect ecdysis is a hormonally programmed physiological sequence that enables insects to escape their old cuticle at the end of each developmental stage. The immediate events leading to ecdysis, which are initiated upon release of ecdysis-triggering hormones (ETH) into the bloodstream, include respiratory inflation and sequential stereotypic behaviors that facilitate shedding of the cuticle. Here we report that the Drosophila gene CG5911 encodes two functionally distinct subtypes of G protein-coupled receptors through alternative splicing (CG5911a and CG5911b) that respond preferentially to ecdysis-triggering hormones of flies and moths.

View Article and Find Full Text PDF

The Mediator complex is the major multiprotein transcriptional coactivator complex in Drosophila melanogaster. Mediator components interact with diverse sets of transcriptional activator proteins to elicit the sophisticated regulation of gene expression. The distinct phenotypes associated with certain mutations in some of the Mediator genes and the specific in vitro interactions of Mediator gene products with transcriptional activator proteins suggest the presence of activator-specific binding subunits within the Mediator complex.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are ancient, ubiquitous sensors vital to environmental and physiological signaling throughout organismal life. With the publication of the Drosophila genome, numerous "orphan" GPCRs have become available for functional analysis. Here we characterize two groups of GPCRs predicted as receptors for peptides with a C-terminal amino acid sequence motif consisting of -PRXamide (PRXa).

View Article and Find Full Text PDF

The Mediator complex is generally required for transcriptional regulation in species ranging from yeast to human. Throughout evolution, the functional diversity of the Mediator complex has been enhanced to meet the increasing requirements for sophisticated gene regulation. It is likely that greater structural complexity is thus required to accomplish these new, complex regulatory functions.

View Article and Find Full Text PDF

A genetically engineered bioluminescent bacterium (lac::luxCDABE) was immobilized to develop a whole cell biosensor for the detection of toxic gaseous chemicals. The toxicity of chemicals can be evaluated through the bioluminescent reaction as it reduces in intensity when the cells experience toxic or lethal conditions. This whole cell biosensor was fabricated, using an immobilization technique utilizing solid agar medium, for the measurement of toxicity through direct contact of the cells with the gas.

View Article and Find Full Text PDF