We have quantum chemically studied the influence of ring strain on the competition between the two mechanistically different S 2 and E2 pathways using a series of archetypal ethers as substrate in combination with a diverse set of Lewis bases (F , Cl , Br , HO , H CO , HS , H CS ), using relativistic density functional theory at ZORA-OLYP/QZ4P. The ring strain in the substrate is systematically increased on going from a model acyclic ether to a 6- to 5- to 4- to 3-membered ether ring. We have found that the activation energy of the S 2 pathway sharply decreases when the ring strain of the system is increased, thus on going from large to small cyclic ethers, the S 2 reactivity increases.
View Article and Find Full Text PDF