Background: The increasing availability of data on social contact patterns and time use provides invaluable information for studying transmission dynamics of infectious diseases. Social contact data provide information on the interaction of people in a population whereas the value of time use data lies in the quantification of exposure patterns. Both have been used as proxies for transmission risks within in a population and the combination of both sources has led to investigate which contacts are more suitable to describe these transmission risks.
View Article and Find Full Text PDFAirborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts, and thus easily spread within households. Epidemic models, used to gain insight into infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now, there has been no direct empirical evidence to support this assumption.
View Article and Find Full Text PDFBackground: School closure is often considered as an option to mitigate influenza epidemics because of its potential to reduce transmission in children and then in the community. The policy is still however highly debated because of controversial evidence. Moreover, the specific mechanisms leading to mitigation are not clearly identified.
View Article and Find Full Text PDFMost infectious disease data is obtained from disease surveillance which is based on observations of symptomatic cases only. However, many infectious diseases are transmitted before the onset of symptoms or without developing symptoms at all throughout the entire disease course, referred to as asymptomatic transmission. Fraser and colleagues [1] showed that this type of transmission plays a key role in assessing the feasibility of intervention measures in controlling an epidemic outbreak.
View Article and Find Full Text PDFDynamic transmission models are essential to design and evaluate control strategies for airborne infections. Our objective was to develop a dynamic transmission model for seasonal influenza allowing to evaluate the impact of vaccinating specific age groups on the incidence of infection, disease and mortality. Projections based on such models heavily rely on assumed 'input' parameter values.
View Article and Find Full Text PDFMany human infectious diseases originate from animals or are transmitted through animal vectors. We aimed to identify factors that are predictive of ownership and touching of animals, assess whether animal ownership influences social contact behavior, and estimate the probability of a major zoonotic outbreak should a transmissible influenza-like pathogen be present in animals, all in the setting of a densely populated European country. A diary-based social contact survey (n = 1768) was conducted in Flanders, Belgium, from September 2010 until February 2011.
View Article and Find Full Text PDFWe expect social networks to change as a result of illness, but social contact data are generally collected from healthy persons. Here we quantified the impact of influenza-like illness on social mixing patterns. We analyzed the contact patterns of persons from England measured when they were symptomatic with influenza-like illness during the 2009 A/H1N1pdm influenza epidemic (2009-2010) and again 2 weeks later when they had recovered.
View Article and Find Full Text PDFAlthough there is no doubt that significant morbidity and mortality occur during annual influenza epidemics, the role of contextual circumstances, which catalyze seasonal influenza transmission, remains unclear. Weather conditions are believed to affect virus survival, efficiency of transmission and host immunity, but seasonality may also be driven by a tendency of people to congregate indoors during periods of bad weather. To test this hypothesis, we combined data from a social contact survey in Belgium with local weather data.
View Article and Find Full Text PDF