Publications by authors named "Kim Silberreis"

Article Synopsis
  • A new handheld point-of-care (PoC) device was developed for viral detection, achieving PCR-level sensitivity and specificity in under 40 minutes, which includes a quick 15-minute sample preparation.
  • The device utilizes a novel technique called pulse controlled amplification (PCA) that rapidly heats small sample volumes using electrical pulses.
  • Finite element analysis was used to optimize the device's performance, demonstrating its capability to detect SARS-CoV-2 viral RNA at levels as low as 0.88 copies/μL, making it comparable to traditional RT-qPCR methods.
View Article and Find Full Text PDF

Real-time PCR (rtPCR) has become an essential tool in clinical microbiology and has been used for the acute diagnostics of many pathogens. Key performance indicators of rtPCR assays are their specificity as well as their analytical and clinical sensitivity. One way to maximize the sensitivity of such diagnostic rtPCRs is the use of genomic targets, which are present in several copies in the target cells.

View Article and Find Full Text PDF

Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds.

View Article and Find Full Text PDF

A promising candidate for tumor targeted toxins is the chicken anemia-derived protein apoptin that induces tumor-specific apoptosis. It was aimed to design a novel apoptin-based targeted toxin by genetic fusion of apoptin with the tumor-directed ligand epidermal growth factor (EGF) using Escherichia coli as expression host. However, apoptin is highly hydrophobic and tends to form insoluble aggregates.

View Article and Find Full Text PDF

The complement system is a powerful mechanism of the innate immune defense system. Dysregulation may contribute to several diseases. Heparin is a known regulator of the complement system, but its application is limited due to its anticoagulative activity.

View Article and Find Full Text PDF

Inflammatory processes are beneficial responses to overcome injury or illness. Knowledge of the underlying mechanisms allows for a specific treatment. Thus, synthetic systems can be generated for a targeted interaction.

View Article and Find Full Text PDF

A supramolecular toolbox approach for multivalent ligand-receptor recognition was established based on β-cyclodextrin vesicles (CDVs). A series of bifunctional ligands for CDVs was synthesised. These ligands comprise on one side adamantane, enabling the functionalisation of CDVs with these ligands, and either mannose or sulphate group moieties on the other side for biological receptor recognition.

View Article and Find Full Text PDF

Understanding the mechanism of interactions of nanomaterials at biointerfaces is a crucial issue to develop new antimicrobial vectors. In this work, a series of water-soluble fullerene-polyglycerol sulfates (FPS) with different fullerene/polymer weight ratios and varying numbers of polyglycerol sulfate branches are synthesized, characterized, and their interactions with two distinct surfaces displaying proteins involved in target cell recognition are investigated. The combination of polyanionic branches with a solvent exposed variable hydrophobic core in FPS proves to be superior to analogs possessing only one of these features in preventing interaction of vesicular stomatitis virus coat glycoprotein (VSV-G) with baby hamster kidney cells serving as a model of host cell.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is one of the most dangerous viruses for pigs and is endemic in Africa but recently also spread into the Russian Federation and the Eastern border of the EU. So far there is no vaccine or antiviral drug available to curtail the infection. Thus, control strategies based on novel inhibitors are urgently needed.

View Article and Find Full Text PDF

Efficient inhibition of cell-pathogen interaction to prevent subsequent infection is an urgent but yet unsolved problem. In this study, the synthesis and functionalization of novel multivalent 2D carbon nanosystems as well as their antiviral efficacy in vitro are shown. For this reason, a new multivalent 2D flexible carbon architecture is developed in this study, functionalized with sulfated dendritic polyglycerol, to enable virus interaction.

View Article and Find Full Text PDF