Publications by authors named "Kim Sapsford"

In 2015, Zika virus (ZIKV) appeared as an emerging pathogen, generating a global and urgent need for accurate diagnostic devices. During this public health crisis, several nucleic acid testing (NAT)-based Zika assays were submitted to the US Food and Drug Administration (FDA) for Emergency Use Authorization. The FDA's Center for Devices and Radiological Health, in collaboration with the FDA's Center for Biologics Evaluation and Research, responded to this Zika emergency by developing and producing a reference panel (RP) for Zika RNA (Zika FDA-RP) suitable for performance assessment of ZIKV NAT-based in vitro diagnostic devices.

View Article and Find Full Text PDF

Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins.

View Article and Find Full Text PDF

This review investigates optical sensor platforms for protein multiplexing, the ability to analyze multiple analytes simultaneously. Multiplexing is becoming increasingly important for clinical needs because disease and therapeutic response often involve the interplay between a variety of complex biological networks encompassing multiple, rather than single, proteins. Multiplexing is generally achieved through one of two routes, either through spatial separation on a surface (different wells or spots) or with the use of unique identifiers/labels (such as spectral separation-different colored dyes, or unique beads-size or color).

View Article and Find Full Text PDF

Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods.

View Article and Find Full Text PDF

Contamination and adulterants in both naturally derived and synthetic drugs pose a serious threat to the worldwide medical community. Developing rapid and sensitive sensors/devices to detect these hazards is thus a continuing need. We describe a hydrophilic semiconductor quantum dot (QD)-peptide Förster resonance energy transfer (FRET) nanosensor for monitoring the activity of kallikrein, a key proteolytic enzyme functioning at the initiation of the blood clotting cascade.

View Article and Find Full Text PDF

The US FDA is the US agency responsible for regulating intelligent drug-delivery systems (IDDS). IDDS can be classified as a device, drug, biologic or combination product. In this perspective, the current regulatory framework for IDDS and future perspectives on how the field is expected to evolve from a regulatory standpoint is discussed.

View Article and Find Full Text PDF

The simultaneous detection of two analytes, chicken IgY (IgG) and Staphylococcal enterotoxin B (SEB), in the single well of a 96-well plate is demonstrated using luminescent semiconductor quantum dot nanocrystal (NC) tracers. The NC-labeled antibodies were prepared via sulfhydryl-reactive chemistry using a facile protocol that took <3 h. Dose response curves for each target were evaluated in a single immunoassay format and compared to Cy5, a fluorophore commonly used in fluorescent immunoassays, and found to be equivalent.

View Article and Find Full Text PDF

In this study, a fluorescence resonance energy transfer (FRET)-based quantum dot (QD) immunoassay for detection and identification of Aspergillus amstelodami was developed. Biosensors were formed by conjugating QDs to IgG antibodies and incubating with quencher-labeled analytes; QD energy was transferred to the quencher species through FRET, resulting in diminished fluorescence from the QD donor. During a detection event, quencher-labeled analytes are displaced by higher affinity target analytes, creating a detectable fluorescence signal increase from the QD donor.

View Article and Find Full Text PDF

Numerous studies have examined how the cellular delivery of gold nanoparticles (AuNPs) is influenced by different physical and chemical characteristics; however, the complex relationship between AuNP size, uptake efficiency and intracellular localization remains only partially understood. Here we examine the cellular uptake of a series of AuNPs ranging in diameter from 2.4 to 89 nm that are synthesized and made soluble with poly(ethylene glycol)-functionalized dithiolane ligands terminating in either carboxyl or methoxy groups and covalently conjugated to cell penetrating peptides.

View Article and Find Full Text PDF
Article Synopsis
  • Effective biological use of nanocrystalline semiconductor quantum dots is limited by the need for better labeling methods, prompting the introduction of two new bioconjugation chemistries targeting amines and thiols.
  • The first approach uses aniline-catalyzed hydrazone bond formation for amines, while the second employs maleimide groups for thiols, enabling fast production of nanocrystal-protein bioconjugates in about 3 hours.
  • These new chemistries demonstrate wide applicability in various techniques such as immunoassays and flow cytometry, achieving high multiplexing potential without significant toxicity in cellular samples.
View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs) are extremely potent bacterial toxins that contaminate food supplies along with having a high potential for exploitation as bioterrorism agents. There is a continuing need to rapidly and sensitively detect exposure to these toxins and to verify their active state, as the latter directly affects diagnosis and helps provide effective treatments. We investigate the use of semiconductor quantum dot (QD)-peptide Förster resonance energy transfer (FRET) assemblies to monitor the activity of the BoNT serotype A light chain protease (LcA).

View Article and Find Full Text PDF

Assembling and interconnecting the building blocks of nanoscale devices and being able to electronically address or measure responses at the molecular level remains an important challenge for nanotechnology. Here we show the usefulness of bottom-up self-assembly for building electronic nanosensors from multiple components that have been designed to interact in a controlled manner. Cowpea mosaic virus was used as a scaffold to control the positions of gold nanoparticles.

View Article and Find Full Text PDF

Biosensors based on antibody recognition have a wide range of monitoring applications that apply to clinical, environmental, homeland security, and food problems. In an effort to improve the limit of detection of the Naval Research Laboratory (NRL) Array Biosensor, magnetic nanoparticles (MNPs) were designed and tested using a fluorescence-based array biosensor. The MNPs were coated with the fluorescently labeled protein, AlexaFluor647-chicken IgG (Alexa647-chick IgG).

View Article and Find Full Text PDF

This article highlights a current US FDA perspective concerning the use of biomarker-based diagnostics for personalized medicine. Specifically, current biomarkers that have application for improving the benefit/risk profile of already approved drugs are discussed. The success of biomarkers for use in personalized medicine depends on many factors, including proper evaluation of the usefulness of the biomarker for assessing the event of interest, and the safety and effectiveness of the diagnostic device used to measure the biomarker, which includes appropriate analytical and clinical validation.

View Article and Find Full Text PDF

A portable and rapid detection system for the activity analysis of Botulinum Neurotoxins (BoNT) is needed for food safety and bio-security applications. To improve BoNT activity detection, a previously designed portable charge-coupled device (CCD) based detector was modified and equipped with a higher intensity more versatile multi-wavelength spatial light-emitting diode (LED) illumination, a faster CCD detector and the capability to simultaneously detect 30 samples. A FITC/DABCYL Förster Resonance Energy Transfer (FRET)-labeled peptide substrate (SNAP-25), with BoNT-A target cleavage site sequence was used to measure BoNT-A light chain (LcA) activity through the FITC fluorescence increase that occurs upon peptide substrate cleavage.

View Article and Find Full Text PDF

A simple bifunctional colorimetric/fluorescent sensing assay is demonstrated for the detection of HIV-1 specific antibodies. This assay makes use of a short peptide sequence coupled to an environmentally sensitive dye that absorbs and emits in the visible portion of the spectrum. The core peptide sequence is derived from the highly antigenic six-residue epitope of the HIV-1 p17 protein and is situated adjacent to a terminal cysteine residue which enables site-specific fluorescent labeling with Cy3 cyanine dye.

View Article and Find Full Text PDF

A previously developed fluorescence sensing platform, combining spatial illumination using electroluminescence (EL) semiconductor strips with charge coupled device (CCD)-based detection (EL-CCD), was adapted to a new 96-well chip for colorimetric immunological assays, enhancing the capabilities of the EL-CCD platform. The modified system was demonstrated using a colorimetric-based enzyme linked immunosorbent assay (ELISA) for detection of staphylococcal enterotoxin B (SEB). Limits of detection (LODs) of 3.

View Article and Find Full Text PDF

Array-based biosensor technology offers the user the ability to detect and quantify multiple targets in multiple samples simultaneously (Analytical Sciences 23:5-10, 2007). The NRL Array Biosensor has been developed with the aim of creating a system for sensitive, rapid, on-site screening for multiple targets of interest. This system is fluorescence-based, using evanescent illumination of a waveguide, and has demonstrated the use of both sandwich and competitive immunoassays for the detection of both high and low molecular weight targets, respectively.

View Article and Find Full Text PDF

Current biodetection illumination technologies (laser, LED, tungsten lamp, etc.) are based on spot illumination with additional optics required when spatial excitation is required. Herein we describe a new approach of spatial illumination based on electroluminescence (EL) semiconductor strips available in several wavelengths, greatly simplifying the biosensor design by eliminating the need for additional optics.

View Article and Find Full Text PDF

An immunoassay based on gliding microtubules (MTs) is described for the detection of staphylococcal enterotoxin B. Detection is performed in a sandwich immunoassay format. Gliding microtubules carry the antigen-specific "capture" antibody, and bound analyte is detected using a fluorescent viral scaffold as the tracer.

View Article and Find Full Text PDF

Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged.

View Article and Find Full Text PDF

Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe-ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (approximately 50-200 Angstrom).

View Article and Find Full Text PDF

With recent advances in surface chemistry, microfluidics, and data analysis, there are ever increasing reports of array-based methods for detecting and quantifying multiple targets. However, only a few systems have been described that require minimal preparation of complex samples and possess a means of quantitatively assessing matrix effects. The NRL Array Biosensor has been developed with the goal of rapid and sensitive detection of multiple targets from multiple samples analyzed simultaneously.

View Article and Find Full Text PDF