The origin of multiple myeloma depends on interactions with stromal cells in the course of normal B-cell differentiation and evolution of immunity. The concept of the present study is that genes involved in MM pathogenesis, such as immune response genes, can be identified by screening for single-nucleotide polymorphisms (SNPs) involved in the immune response and a subsequent statistical analysis that focusses on the association of SNPs, certain haplotypes or SNP-SNP interactions with MM risk and prognosis. We genotyped 348 Danish patients and 355 controls for 13 SNPs located in the TNFA, IL-4, IL-6, IL-10 and CHI3L1 gene promoters.
View Article and Find Full Text PDFBackground: Malignant B-cell clones are affected by both acquired genetic alterations and by inherited genetic variations changing the inflammatory tumour microenvironment.
Methods: We investigated 50 inflammatory response gene polymorphisms in 355 B-cell non-Hodgkin's lymphoma (B-NHL) samples encompassing 216 diffuse large B cell lymphoma (DLBCL) and 139 follicular lymphoma (FL) and 307 controls. The effect of single genes and haplotypes were investigated and gene-expression analysis was applied for selected genes.
Purpose: Current diagnostic tests for diffuse large B-cell lymphoma use the updated WHO criteria based on biologic, morphologic, and clinical heterogeneity. We propose a refined classification system based on subset-specific B-cell-associated gene signatures (BAGS) in the normal B-cell hierarchy, hypothesizing that it can provide new biologic insight and diagnostic and prognostic value.
Patients And Methods: We combined fluorescence-activated cell sorting, gene expression profiling, and statistical modeling to generate BAGS for naive, centrocyte, centroblast, memory, and plasmablast B cells from normal human tonsils.
Background: Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping.
Methods: We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors.
Background Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. Methods We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors.
View Article and Find Full Text PDFBackground: This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and therefore it is important to optimize and validate each step in the procedure.
Methods: Normal lymphoid tissues from blood, tonsils, thymus and bone marrow were immunophenotyped by the 8-colour Euroflow panel using multiparametric flow cytometry.
Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow.
View Article and Find Full Text PDFBackground: Malignant cells in tumours of B-cell origin account for 0.1% to 98% of the total cell content, depending on disease entity. Recently, gene expression profiles (GEPs) of B-cell lymphomas based on microarray technologies have contributed significantly to improved sub-classification and diagnostics.
View Article and Find Full Text PDF