Publications by authors named "Kim R Drasbek"

Background: Post-stroke cognitive impairment (PSCI) is common. However, the underlying pathophysiology remains largely unknown. Understanding the role of microvascular changes and finding markers that can predict PSCI, could be a first step towards better screening and management of PSCI.

View Article and Find Full Text PDF

Systemic inflammation affects cognitive functions and increases the risk of dementia. This phenomenon is thought to be mediated in part by cytokines that promote neuronal survival, but the continuous exposure to which may lead to neurodegeneration. The effects of systemic inflammation on cerebral blood vessels, and their provision of adequate oxygen to support critical brain parenchymal cell functions, remains unclear.

View Article and Find Full Text PDF

Post-embedding correlative light and electron microscopy (CLEM) has the advantage of high-precision registration and enables light and electron microscopy imaging of the same slice. However, its broad application has been hampered by the limited available fluorescent proteins (FPs) and a low signal-to-background ratio (SBR). Here, we developed a green photoswitchable FP, mEosEM-E with substantially high on/off contrast in EM samples embedded in Epon resin, which maximally preserves cellular structures but quenches the fluorescence of FPs.

View Article and Find Full Text PDF

Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE).

View Article and Find Full Text PDF

Remote ischemic conditioning (RIC) is a procedure that can attenuate ischemic-reperfusion injury by conducting brief cycles of ischemia and reperfusion in the arm or leg. Extracellular vesicles (EVs) circulating in the bloodstream can release their content into recipient cells to confer protective function on ischemia-reperfusion injured (IRI) organs. Skeletal muscle cells are potential candidates to release EVs as a protective signal during RIC.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC) by brief periods of limb ischemia and reperfusion protects against ischemia-reperfusion injury. We studied the cardioprotective role of extracellular vesicles (EV)s released into the circulation after RIC and EV accumulation in injured myocardium.

Methods: We used plasma from healthy human volunteers before and after RIC (pre-PLA and post-PLA) to evaluate the transferability of RIC.

View Article and Find Full Text PDF

There is a large unmet need for fast and reliable diagnostics in several diseases. One such disease is stroke, where the efficacy of modern reperfusion therapies is highly time-dependent. Diagnosis of stroke and treatment initiation should be performed as soon as possible, and preferably before arrival at the stroke center.

View Article and Find Full Text PDF

Ischemic exercise conducted as low-load blood flow restricted resistance exercise (BFRE) can lead to muscle remodelling and promote muscle growth, possibly through activation of muscle precursor cells. Cell activation can be triggered by blood borne extracellular vesicles (EVs) as these nano-sized particles are involved in long distance signalling. In this study, EVs isolated from plasma of healthy human subjects performing a single bout of BFRE were investigated for their change in EV surface profiles and miRNA cargos as well as their impact on skeletal muscle precursor cell proliferation.

View Article and Find Full Text PDF

Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue.

View Article and Find Full Text PDF

Objective: Pericytes surround the endothelial cells of the microvasculature where they serve as active participants in crucial vascular functions such as angiogenesis, stability, and permeability. However, pericyte loss or dysfunction has been described in a number of pathologies. Targeting pericytes could therefore prove instrumental in the further development of vascular therapeutics.

View Article and Find Full Text PDF

Objective: Prenatal exposure to valproic acid (VPA) enhances the risk for later development of autism spectrum disorders (ASD). An altered gamma-aminobutyric acid (GABA) system may be a key factor in ASD. Here we investigated possible changes in the GABA system in rats exposed to a low dose of prenatal VPA.

View Article and Find Full Text PDF

The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice.

View Article and Find Full Text PDF

Diabetic neuropathy is associated with disturbances in endoneurial metabolism and microvascular morphology, but the roles of these factors in the aetiopathogenesis of diabetic neuropathy remain unclear. Changes in endoneurial capillary morphology and vascular reactivity apparently predate the development of diabetic neuropathy in humans, and in manifest neuropathy, reductions in nerve conduction velocity correlate with the level of endoneurial hypoxia. The idea that microvascular changes cause diabetic neuropathy is contradicted, however, by reports of elevated endoneurial blood flow in early experimental diabetes, and of unaffected blood flow when early histological signs of neuropathy first develop in humans.

View Article and Find Full Text PDF

Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma.

View Article and Find Full Text PDF

Antiangiogenic therapies are being pursued as a means of starving tumors of their energy supply. Although numerous studies show that such therapies render tumors hypoxic, just as many studies have, surprisingly, shown improved tumor oxygenation. These contradicting findings challenge both the original rationale for antiangiogenic therapy and our understanding of the physiology of tissue oxygenation.

View Article and Find Full Text PDF

It is widely accepted that hypoperfusion and changes in capillary morphology are involved in the etiopathogenesis of Alzheimer's disease (AD). This is difficult to reconcile with the hyperperfusion observed in young high-risk subjects. Differences in the way cerebral blood flow (CBF) is coupled with the local metabolic needs during different phases of the disease can explain this apparent paradox.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the relevance of long-term endothelial cell culture as a model system of vascular ageing. Micro- and macrovascular endothelial cells were serially passaged until replicative senescence and their ability to form tube-like structures when cultured on Matrigel was assessed throughout their lifespan. For both cell types low passage cultures adopted a homogeneous cobblestone morphology, while senescent cultures were extremely heterogeneous.

View Article and Find Full Text PDF

Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal-recessively inherited disorder of gamma-aminobutyrate (GABA) catabolism characterized by ataxia and epilepsy. Since SSADH is responsible for GABA break-down downstream of GABA transaminase, patients manifest high extracellular levels of GABA, as well as the GABA(B) receptor (GABA(B)R) agonist gamma-hydroxybutyrate (GHB). SSADH knockout (KO) mice display absence seizures, which progress into lethal tonic-clonic seizures at around 3weeks of age.

View Article and Find Full Text PDF

Background: The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1), and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as reliable genotyping protocols are lacking.

View Article and Find Full Text PDF

Activity of extrasynaptic GABA A receptors mediating tonic inhibition is thought to play an important role for the excitability of the mammalian cerebral cortex. However, little is known about the cell type-specific expression of tonic inhibition in particular types of cortical interneurons. Here, we used transgenic mice expressing green fluorescent protein (GFP) in somatostatin-positive (SOM) interneurons and investigated tonic inhibition in SOM interneurons versus pyramidal cells in neocortical layers 2/3.

View Article and Find Full Text PDF

THIP is a hypnotic drug, which displays a unique pharmacological profile, because it activates a subset of extrasynaptic gamma-aminobutyric acid type A (GABA(A)) receptors containing delta-subunits. It is important to study the physiology and pharmacology of these extrasynaptic receptors and to determine how THIP interacts with other hypnotics and anesthetics. Here, we study the modulation of the extrasynaptic response to THIP using three classes of GABA(A)-receptor ligands.

View Article and Find Full Text PDF

Bacterial IgA1 proteases share the ability to cleave human IgA1 at the hinge region. Nature has developed this trait along at least five independent evolutionary lineages. To obtain further insight into the phylogeny and function of IgA1 proteases, the nucleotide sequence of the iga gene that encodes the IgA1 protease was determined from two Streptococcus mitis strains and one Gemella haemolysans strain.

View Article and Find Full Text PDF

THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) is a selective GABA(A) receptor agonist with a preference for delta-subunit containing GABA(A) receptors. THIP is currently being tested in human trials for its hypnotic effects, displaying advantageous tolerance and addiction properties. Since its cellular actions in the neocortex are uncertain, we studied the effects of THIP on neurons in slices of frontoparietal neocortex of 13- to 19-day-old (P13-19) mice.

View Article and Find Full Text PDF