Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases. The composition of the mitochondrial proteome has been characterized; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome.
View Article and Find Full Text PDFThe mitochondrial outer membrane contains integral proteins with α-helical membrane anchors or a transmembrane β-barrel. The translocase of the outer membrane (TOM) cooperates with the sorting and assembly machinery (SAM) in the import of β-barrel proteins, whereas the mitochondrial import (MIM) complex inserts precursors of multi-spanning α-helical proteins. Single-spanning proteins constitute more than half of the integral outer membrane proteins; however, their biogenesis is poorly understood.
View Article and Find Full Text PDFMitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown.
View Article and Find Full Text PDFIn this report, we summarize recent findings about a role of the outer membrane metabolite channel VDAC/porin in protein import into mitochondria. Mitochondria fulfill key functions for cellular energy metabolism. Their biogenesis involves the import of about 1000 different proteins that are produced as precursors on cytosolic ribosomes.
View Article and Find Full Text PDFThe mitochondrial inner membrane harbors a large number of metabolite carriers. The precursors of carrier proteins are synthesized in the cytosol and imported into mitochondria by the translocase of the outer membrane (TOM) and the carrier translocase of the inner membrane (TIM22). Molecular chaperones in the cytosol and intermembrane space bind to the hydrophobic precursors to prevent their aggregation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
February 2018
Phosphatidylserine decarboxylase 1 (Psd1p) catalyzes the formation of the majority of phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae. Psd1p is localized to mitochondria, anchored to the inner mitochondrial membrane (IMM) through membrane spanning domains and oriented towards the mitochondrial intermembrane space. We found that Psd1p harbors at least two inner membrane-associated domains, which we named IM1 and IM2.
View Article and Find Full Text PDFIn the yeast Saccharomyces cerevisiae, the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) produces the largest amount of cellular phosphatidylethanolamine (PE). Psd1p is synthesized as a larger precursor on cytosolic ribosomes and then imported into mitochondria in a three-step processing event leading to the formation of an α-subunit and a β-subunit. The α-subunit harbors a highly conserved motif, which was proposed to be involved in phosphatidylserine (PS) binding.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2017
Mitochondria contain two membranes: the outer and inner membrane. Whereas the outer membrane is particularly enriched in phospholipids, the inner membrane has an unusual high protein content and forms large invaginations termed cristae. The proper phospholipid composition of the membranes is crucial for mitochondrial functions.
View Article and Find Full Text PDF