Publications by authors named "Kim Middleton"

Lysine acetylation is an important regulatory post-translational modification (PTM) that occurs sub-stoichiometrically, often representing less than 1% of the target protein. This makes studying endogenous protein acetylation extremely challenging. Recent reports suggest that several post-translational modifications (PTMs), including lysine acetylation, play a major role in the regulation the programmed cell death-ligand 1 (PD-L1), a clinically important protein target.

View Article and Find Full Text PDF

Post-translational modification (PTM) crosstalk is recognized as a major cell-regulatory mechanism, and studies of several proteins have validated the premise that PTMs work in concert. Previous work by our group investigated the potential PTM crosstalk on proteins in the EGFR-Ras-c-Fos axis by utilizing a comprehensive set of PTM reagents termed Signal-Seeker toolkits. In this study, these tools were used to investigate the potential PTM crosstalk that occurs in acetylated mitochondrial proteins in response to a mitochondrial stress-inducing agent hydrogen peroxide (H₂O₂).

View Article and Find Full Text PDF

It is now well-appreciated that post-translational modifications (PTMs) play an integral role in regulating a protein's structure and function, which may be essential for a given protein's role both physiologically and pathologically. Enrichment of PTMs is often necessary when investigating the PTM status of a target protein, because PTMs are often transient and relatively low in abundance. Many pitfalls are encountered when enriching for a PTM of a target protein, such as buffer incompatibility, the target protein antibody is not IP-compatible, loss of PTM signal, and others.

View Article and Find Full Text PDF

Identification of a novel post-translational modification (PTM) for a target protein, defining its physiologic role, and studying its potential crosstalk with other PTMs is a challenging process. A set of highly sensitive tools termed Signal-Seeker kits was developed, which enables rapid and simple detection of post-translational modifications on any target protein.  The methodology for these tools utilizes affinity purification of modified proteins from a cell or tissue lysate and immunoblot analysis.

View Article and Find Full Text PDF

A set of high-affinity, high-specificity posttranslational modification (PTM) enrichment tools was developed to generate an unbiased snapshot of four key PTM profiles (tyrosine phosphorylation, acetylation, ubiquitination, and SUMOylation 2/3) for the clinically important protein programmed cell death ligand 1 (PD-L1). The results showed that epidermal growth factor (EGF) treatment induced tyrosine phosphorylation, acetylation, and ubiquitination of PD-L1. Further characterization of EGF-induced PD-L1 ubiquitination revealed a significant increase in mono- and multiubiquitination of PD-L1 that occurred on glycosylated PD-L1.

View Article and Find Full Text PDF

Terson syndrome is a known complication of subarachnoid hemorrhage (SAH) that causes potentially reversible vision loss. It develops after SAH because of vitreous hemorrhage caused by retinal capillary disruption. Case series report an incidence of Terson syndrome in approximately 8%-15% of patients with SAH.

View Article and Find Full Text PDF

We developed tubulin purification strategies that allowed sufficient material to be produced for compound-screening projects. Tubulins were polymerized in the presence of compounds using either turbidometric or fluorescence polymerization assays. IC50 and EC50 values were calculated and used to determine ratios between host and target tubulin (TT) (e.

View Article and Find Full Text PDF

Kinesins are a group of related molecular motor proteins that have great potential as targets for antimitotic drug development. We have developed two novel assays, one end-point and one kinetic, that are useful for the discovery and optimization of kinesin modulators. Both assays measure inorganic phosphate (Pi) generated by microtubule-activated kinesin adenosine triphosphatase activity.

View Article and Find Full Text PDF