Publications by authors named "Kim Masuda"

The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3.

View Article and Find Full Text PDF

Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells.

View Article and Find Full Text PDF

Background: Parents play a key role in infant's development through their interactions and the type of environment they provide to promote active play. The amount of time parents are able to spend with their infant is dependent on their working status, yet few studies have explored parent perception of their infant's active play by working status. The purpose of this study was to explore parent perception of active play and compare responses between working and stay-at-home parents.

View Article and Find Full Text PDF

PHARC (polyneuropathy, hearing loss, cerebellar ataxia, retinitis pigmentosa, and cataract) is a human neurological disorder caused by deleterious mutations in the gene, which encodes an integral membrane lyso-phosphatidylserine (lyso-PS) lipase. Pharmacological or genetic disruption of ABHD12 leads to higher levels of lyso-PS lipids in human cells and the central nervous system (CNS) of mice. ABHD12 loss also causes rapid rewiring of PS content, resulting in selective increases in the level of arachidonoyl (C20:4) PS and decreases in the levels of other PS species.

View Article and Find Full Text PDF

Complex hereditary spastic paraplegia (HSP) is a genetic disorder that causes lower limb spasticity and weakness and intellectual disability. Deleterious mutations in the poorly characterized serine hydrolase DDHD2 are a causative basis for recessive complex HSP. DDHD2 exhibits phospholipase activity in vitro, but its endogenous substrates and biochemical functions remain unknown.

View Article and Find Full Text PDF

The endocannabinoid 2-arachidonoylglycerol (2-AG) is biosynthesized by diacylglycerol lipases DAGLα and DAGLβ. Chemical probes to perturb DAGLs are needed to characterize endocannabinoid function in biological processes. Here we report a series of 1,2,3-triazole urea inhibitors, along with paired negative-control and activity-based probes, for the functional analysis of DAGLβ in living systems.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) plays the central role in the degradation of bioactive N-acylethanolamines such as the endocannabinoid arachidonoylethanolamide (anandamide) in brain and peripheral tissues. A lysosomal enzyme referred to as N-acylethanolamine-hydrolyzing acid amidase (NAAA) catalyzes the same reaction with preference to palmitoylethanolamide, an endogenous analgesic and neuroprotective substance, and is therefore expected as a potential target of therapeutic drugs. In the in vitro assays thus far performed, the maximal activity of NAAA was achieved in the presence of both nonionic detergent (Triton X-100 or Nonidet P-40) and the SH reagent dithiothreitol.

View Article and Find Full Text PDF

The potent regulatory properties of NKT cells render this subset of lipid-specific T cells a promising target for immunotherapeutic interventions. The marine sponge glycolipid alpha-galactosylceramide (alphaGalCer) is the proto-typic NKT cell agonist, which elicits this function when bound to CD1d. However, our understanding of the in vivo properties of NKT cell agonists and the host factors that control their bioactivity remains very limited.

View Article and Find Full Text PDF

We recently described a fluorescence polarization platform for competitive activity-based protein profiling (fluopol-ABPP) that enables high-throughput inhibitor screening for enzymes with poorly characterized biochemical activity. Here, we report the discovery of a class of oxime ester inhibitors for the unannotated serine hydrolase RBBP9 from a full-deck (200,000+ compound) fluopol-ABPP screen conducted in collaboration with the Molecular Libraries Screening Center Network (MLSCN). We show that these compounds covalently inhibit RBBP9 by modifying enzyme's active site serine nucleophile and, based on competitive ABPP in cell and tissue proteomes, are selective for RBBP9 relative to other mammalian serine hydrolases.

View Article and Find Full Text PDF

N-arachidonoyl dopamine (NADA) is an endogenous ligand that activates the cannabinoid type 1 receptor and the transient receptor potential vanilloid type 1 channel. Two potential biosynthetic pathways for NADA have been proposed, though no conclusive evidence exists for either. The first is the direct conjugation of arachidonic acid with dopamine and the other is via metabolism of a putative N-arachidonoyl tyrosine (NA-tyrosine).

View Article and Find Full Text PDF

Background: N-arachidonoyl glycine (NAGly) is an endogenous signaling lipid with a wide variety of biological activity whose biosynthesis is poorly understood. Two primary biosynthetic pathways have been proposed. One suggests that NAGly is formed via an enzymatically regulated conjugation of arachidonic acid (AA) and glycine.

View Article and Find Full Text PDF

N-arachidonoyl glycine is an endogenous arachidonoyl amide that activates the orphan G protein-coupled receptor (GPCR) GPR18 in a pertussis toxin (PTX)-sensitive manner and produces antinociceptive and antiinflammatory effects. It is produced by direct conjugation of arachidonic acid to glycine and by oxidative metabolism of the endocannabinoid anandamide. Based on the presence of enzymes that conjugate fatty acids with glycine and the high abundance of palmitic acid in the brain, we hypothesized the endogenous formation of the saturated N-acyl amide N-palmitoyl glycine (PalGly).

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) is a dimeric, membranebound enzyme that degrades neuromodulatory fatty acid amides and esters and is expressed in mammalian brain and peripheral tissues. The cleavage of approximately 30 amino acids from each subunit creates an FAAH variant that is soluble and homogeneous in detergent-containing buffers, opening the avenue to the in vitro mechanistic and structural studies. Here we have studied the stability of FAAH as a function of guanidinium hydrochloride concentration and of hydrostatic pressure.

View Article and Find Full Text PDF

Cancer research depends on the use of human cell lines for both the in vitro (culture) and in vivo (xenograft) analysis of tumor progression and treatment. However, the extent to which cultured preparations of human cancer lines display similar properties in vivo, where important host factors may influence tumor biology, remains unclear. Here, we address this question by conducting a functional proteomic analysis of the human breast cancer line MDA-MB-231 grown in culture and as orthotopic xenograft tumors in the mammary fad pad of immunodeficient mice.

View Article and Find Full Text PDF

Cellular communication in the nervous system is mediated by chemical messengers that include amino acids, monoamines, peptide hormones, and lipids. An interesting question is how neurons regulate signals that are transmitted by membrane-embedded lipids. Here, we report the 2.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlv05erbtb9cmgek574uqvoq2ktep7nfh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once