Understanding the epidemiology and transmission dynamics of transboundary animal diseases (TADs) among wild pigs () will aid in preventing the introduction or containment of TADs among wild populations. Given the challenges associated with studying TADs in free-ranging populations, a surrogate pathogen system may predict how pathogens may circulate and be maintained within wild free-ranging swine populations, how they may spill over into domestic populations, and how management actions may impact transmission. We assessed the suitability of Torque teno sus virus 1 (TTSuV1) to serve as a surrogate pathogen for molecular epidemiological studies in wild pigs by investigating the prevalence, persistence, correlation with host health status and genetic variability at two study areas: Archbold's Buck Island Ranch in Florida and Savannah River Site in South Carolina.
View Article and Find Full Text PDFWild pigs () are one of the most destructive invasive species in the US, known for causing extensive damage to agricultural commodities, natural resources, and property, and for transmitting diseases to livestock. Following the establishment of the National Feral Swine Damage Management Program (NFSDMP) in 2014, the expansion of wild pig populations has been successfully slowed. This paper combines two modeling approaches across eight separate models to characterize the expansion of wild pig populations in the absence of intervention by the NFSDMP and forecasts the value of a subset of resources safeguarded from the threat of wild pigs.
View Article and Find Full Text PDFIntroductions of transboundary animal diseases (TADs) into free-ranging wildlife can be difficult to control and devastating for domestic livestock trade. Combating a new TAD introduction in wildlife with an emergency response requires quickly limiting spread of the disease by intensely removing wild animals within a contiguous area. In the case of African swine fever virus (ASFv) in wild pigs (Sus scrofa), which has been spreading in many regions of the world, there is little information on the time- and cost-efficiency of methods for intensively and consistently culling wild pigs and recovering carcasses in an emergency response scenario.
View Article and Find Full Text PDFSocial and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens.
View Article and Find Full Text PDFEmerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios.
View Article and Find Full Text PDFOne Health recognizes the health of humans, agriculture, wildlife, and the environment are interrelated. The concept has been embraced by international health and environmental authorities such as WHO, WOAH, FAO, and UNEP, but One Health approaches have been more practiced by researchers than national or international authorities. To identify priorities for operationalizing One Health beyond research contexts, we conducted 41 semi-structured interviews with professionals across One Health sectors (public health, environment, agriculture, wildlife) and institutional contexts, who focus on national-scale and international applications.
View Article and Find Full Text PDFAfrican swine fever (ASF) causes significant morbidity and mortality in both domestic and wild suids (), and disease outbreaks convey profound economic costs to impacted industries due to death loss, the cost of culling exposed/infected animals as the primary disease control measure, and trade restrictions. The co-occurrence of domestic and wild suids significantly complicates ASF management given the potential for wild populations to serve as persistent sources for spillover. We describe the unique threat of African swine fever virus (ASFV) introduction to the United States from epidemiological and ecological perspectives with a specific focus on disease management at the wild-domestic swine interface.
View Article and Find Full Text PDFMany pathogens of humans and livestock also infect wildlife that can act as a reservoir and challenge disease control or elimination. Efficient and effective prioritization of research and management actions requires an understanding of the potential for new tools to improve elimination probability with feasible deployment strategies that can be implemented at scale. Wildlife vaccination is gaining interest as a tool for managing several wildlife diseases.
View Article and Find Full Text PDFContact among animals is crucial for various ecological processes, including social behaviors, disease transmission, and predator-prey interactions. However, the distribution of contact events across time and space is heterogeneous, influenced by environmental factors and biological purposes. Previous studies have assumed that areas with abundant resources and preferred habitats attract more individuals and, therefore, lead to more contact.
View Article and Find Full Text PDFIntroduction: African swine fever (ASF) is a notifiable disease of swine that impacts global pork trade and food security. In several countries across the globe, the disease persists in wild boar (WB) populations sympatric to domestic pig (DP) operations, with continued detections in both sectors. While there is evidence of spillover and spillback between the sectors, the frequency of occurrence and relative importance of different risk factors for transmission at the wildlife-livestock interface remain unclear.
View Article and Find Full Text PDFRaccoon rabies virus (RRV) has been managed using multiple vaccination strategies, including oral rabies vaccination and trap-vaccinate-release (TVR). Identifying a rabies vaccination strategy for an area is a nontrivial task. Vaccination strategies differ in the amount of effort and monetary costs required to achieve a particular level of vaccine seroprevalence (efficiency).
View Article and Find Full Text PDFWild birds are the natural reservoir hosts of influenza A viruses. Highly pathogenic strains of influenza A viruses pose risks to wild birds, poultry, and human health. Thus, understanding how these viruses are transmitted between birds is critical.
View Article and Find Full Text PDFBackground: Data on the movement behavior of translocated wild pigs is needed to develop appropriate response strategies for containing and eliminating new source populations following translocation events. We conducted experimental trials to compare the home range establishment and space-use metrics, including the number of days and distance traveled before becoming range residents, for wild pigs translocated with their social group and individually.
Results: We found wild pigs translocated with their social group made less extensive movements away from the release location and established a stable home range ~5 days faster than those translocated individually.
Transbound Emerg Dis
September 2022
African swine fever virus (ASFv) is a virulent pathogen that threatens domestic swine industries globally and persists in wild boar populations in some countries. Persistence in wild boar can challenge elimination and prevent disease-free status, making it necessary to address wild swine in proactive response plans. In the United States, invasive wild pigs are abundant and found across a wide range of ecological conditions that could drive different epidemiological dynamics among populations.
View Article and Find Full Text PDFPathogen transmission depends on host density, mobility and contact. These components emerge from host and pathogen movements that themselves arise through interactions with the surrounding environment. The environment, the emergent host and pathogen movements, and the subsequent patterns of density, mobility and contact form an 'epidemiological landscape' connecting the environment to specific locations where transmissions occur.
View Article and Find Full Text PDFAntibiotic-resistant microorganisms (ARMs) are widespread in natural environments, animals (wildlife and livestock), and humans, which has reduced our capacity to control life threatening infectious disease. Yet, little is known about their transmission pathways, especially at the wildlife-livestock interface. This study investigated the potential transmission of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by comparing gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans), cattle (Bos taurus), and environmental microbiota.
View Article and Find Full Text PDFAnimal disease surveillance is an important component of the national veterinary infrastructure to protect animal agriculture and facilitates identification of foreign animal disease (FAD) introduction. Once introduced, pathogens shared among domestic and wild animals are especially challenging to manage due to the complex ecology of spillover and spillback. Thus, early identification of FAD in wildlife is critical to minimize outbreak severity and potential impacts on animal agriculture as well as potential impacts on wildlife and biodiversity.
View Article and Find Full Text PDFEvaluating the efficacy of management actions to control invasive species is crucial for maintaining funding and to provide feedback for the continual improvement of management efforts. However, it is often difficult to assess the efficacy of control methods due to limited resources for monitoring. Managers may view effort on monitoring as effort taken away from performing management actions.
View Article and Find Full Text PDFThe ongoing explosion of fine-resolution movement data in animal systems provides a unique opportunity to empirically quantify spatial, temporal and individual variation in transmission risk and improve our ability to forecast disease outbreaks. However, we lack a generalizable model that can leverage movement data to quantify transmission risk and how it affects pathogen invasion and persistence on heterogeneous landscapes. We developed a flexible model 'Movement-driven modelling of spatio-temporal infection risk' (MoveSTIR) that leverages diverse data on animal movement to derive metrics of direct and indirect contact by decomposing transmission into constituent processes of contact formation and duration and pathogen deposition and acquisition.
View Article and Find Full Text PDFOral baiting is used to deliver vaccines to wildlife to prevent, control, and eliminate infectious diseases. A central challenge is how to spatially distribute baits to maximize encounters by target animal populations, particularly in urban and suburban areas where wildlife such as raccoons (Procyon lotor) are abundant and baits are delivered along roads. Methods from movement ecology that quantify movement and habitat selection could help to optimize baiting strategies by more effectively targeting wildlife populations across space.
View Article and Find Full Text PDFThe importance of social and spatial structuring of wildlife populations for disease spread, though widely recognized, is still poorly understood in many host-pathogen systems. In particular, system-specific kin relationships among hosts can create contact heterogeneities and differential disease transmission rates. Here, we investigate how distance-dependent infection risk is influenced by genetic relatedness in a novel host-pathogen system: wild boar (Sus scrofa) and African swine fever (ASF).
View Article and Find Full Text PDFBackground: Determining factors influencing animal movements at a temporal scale that is similar to that at which management actions are conducted (e.g. weekly) is crucial for identifying efficient methods of wildlife conservation and management.
View Article and Find Full Text PDFLittle is known about disease transmission relevant contact rates at the wildlife-livestock interface and the factors shaping them. Indirect contact via shared resources is thought to be important but remains unquantified in most systems, making it challenging to evaluate the impact of livestock management practices on contact networks. Free-ranging wild pigs (Sus scrofa) in North America are an invasive, socially-structured species with an expanding distribution that pose a threat to livestock health given their potential to transmit numerous livestock diseases, such as pseudorabies, brucellosis, trichinellosis, and echinococcosis, among many others.
View Article and Find Full Text PDF