Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide association studies (GWAS) remains a challenge. To this end, we integrated omics information from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci (QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most ancestrally diverse T2D GWAS to date. Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of colocalization with a molecular or T2D-related trait, implicating 657 -effector genes, 1,691 distal-effector genes, 731 metabolites, and 43 T2D-related traits.
View Article and Find Full Text PDFType 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases.
View Article and Find Full Text PDFSummary: Identifying genomic features responsible for genome-wide association study (GWAS) signals has proven to be a difficult challenge; many researchers have turned to colocalization analysis of GWAS signals with expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) to connect GWAS signals to candidate causal genes. The ColocQuiaL pipeline provides a framework to perform these colocalization analyses at scale across the genome and returns summary files and locus visualization plots to allow for detailed review of the results. As an example, we used ColocQuiaL to perform colocalization between a recent type 2 diabetes GWAS and Genotype-Tissue Expression (GTEx) v8 single-tissue eQTL and sQTL data.
View Article and Find Full Text PDFBackground: The majority of Genome Wide Associate Study (GWAS) loci fall in the non-coding genome, making causal variants difficult to identify and study. We hypothesized that the regulatory features underlying causal variants are biologically specific, identifiable from data, and that the regulatory architecture that influences one trait is distinct compared to biologically unrelated traits.
Results: To better characterize and identify these variants, we used publicly available GWAS loci and genomic annotations to build 17 Trait Specific Annotation Based Locus (TSABL) predictors to identify differences between GWAS loci associated with different phenotypic trait groups.
Aims/hypothesis: We aimed to characterise the immunogenic background of insulin-dependent diabetes in a resource-poor rural African community. The study was initiated because reports of low autoantibody prevalence and phenotypic differences from European-origin cases with type 1 diabetes have raised doubts as to the role of autoimmunity in this and similar populations.
Methods: A study of consecutive, unselected cases of recently diagnosed, insulin-dependent diabetes (n = 236, ≤35 years) and control participants (n = 200) was carried out in the ethnic Amhara of rural North-West Ethiopia.
We discuss a recent study that has identified and validated the link between a type-2 diabetes (T2D) association and human adipose biology by means of KLF14 gene expression. In addition to being maternally imprinted, the contributed risk at this locus is greater in female carriers.
View Article and Find Full Text PDFRandom fluctuations in gene expression lead to wide cell-to-cell differences in RNA and protein counts. Most efforts to understand stochastic gene expression focus on local (intrinisic) fluctuations, which have an exact theoretical representation. However, no framework exists to model global (extrinsic) mechanisms of stochasticity.
View Article and Find Full Text PDFPLoS Genet
September 2014
There has been extensive debate over whether certain classes of genes are more likely than others to contain the causal variants responsible for phenotypic differences in complex traits between individuals. One hypothesis states that input/output genes positioned in signal transduction bottlenecks are more likely than other genes to contain causal natural variation. The IME1 gene resides at such a signaling bottleneck in the yeast sporulation pathway, suggesting that it may be more likely to contain causal variation than other genes in the sporulation pathway.
View Article and Find Full Text PDFQuantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL.
View Article and Find Full Text PDFInteractions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a panel of strains that together carry all 32 possible combinations of the 4 QTN genotypes in 2 distinct genetic backgrounds.
View Article and Find Full Text PDFOur understanding of the genetic basis of phenotypic diversity is limited by the paucity of examples in which multiple, interacting loci have been identified. We show that natural variation in the efficiency of sporulation, the program in yeast that initiates the sexual phase of the life cycle, between oak tree and vineyard strains is due to allelic variation between four nucleotide changes in three transcription factors: IME1, RME1, and RSF1. Furthermore, we identified that selection has shaped quantitative variation in yeast sporulation between strains.
View Article and Find Full Text PDF