The study explored the ecotoxicological effects of chronic exposure to microplastic (MP) on adult zebrafish, focusing on environmentally relevant concentrations of polyethylene (PE) beads and polyester (PES). High-throughput untargeted metabolomics via UPLC-QToF-MS and 16S metagenomics for gut microbiota analysis were used to assess ecotoxicity in zebrafish exposed to varying concentrations of PE and PES. The VIP (Variable Importance in Projection) scores indicated PE exposure primarily impacted phospholipids, ceramides, and nucleotide-related compounds, while PES exposure led to alterations in lipid-related compounds, chitin, and amino acid derivatives.
View Article and Find Full Text PDFObjective: We conducted a descriptive analysis of multi-drug resistant tuberculosis (MDR-TB) in Vietnam's two largest cities, Hanoi and Ho Chi Minh city.
Methods: All patients with rifampicin resistant tuberculosis were recruited from Hanoi and surrounding provinces between 2020 and 2022. Additional patients were recruited from Ho Chi Minh city over the same time period.
We characterized the spatial distribution of drug-susceptible (DS) and multidrug-resistant (MDR) tuberculosis (TB) cases in Ho Chi Minh City, Vietnam, a major metropolis in southeastern Asia, and explored demographic and socioeconomic factors associated with local TB burden. Hot spots of DS and MDR TB incidence were observed in the central parts of Ho Chi Minh City, and substantial heterogeneity was observed across wards. Positive spatial autocorrelation was observed for both DS TB and MDR TB.
View Article and Find Full Text PDFHigh concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals.
View Article and Find Full Text PDFWith the global COVID-19 pandemic, wastewater surveillance has received a considerable attention as a method for the early identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater treatment plant (WWTP) and sewer systems. For the first time in Korea, this study utilized the wastewater surveillance technique to monitor the COVID-19 outbreak. Sampling efforts were carried out at the WWTPs in the capital city of Korea, Seoul, and Daegu the place where the first severe outbreak was reported.
View Article and Find Full Text PDFThis study investigated seasonal trends in bioaccumulation potential and toxic effects of mercury (Hg) in Asian clams (Corbicula fluminea) and microbial community. For this, a clam-exposure experiment was performed during summer, fall, and winter seasons in four different sites (HS1: control/clean site; HS2, HS3, and HS4: contaminated sites) of Hyeongsan River estuary, South Korea. Total mercury (THg) and methylmercury (MeHg) in whole sediments were highest at HS4 site during fall, sustained similar levels during winter, but decreased during summer.
View Article and Find Full Text PDFDesalination technology based on Reverse Osmosis (RO) membrane filtration has been resorted to provide high-quality drinking water. RO produced drinking water is characterized by a low bacterial cell concentration. Monitoring microbial quality and ensuring membrane-treated water safety has taken advantage of the rapid development of DNA-based techniques.
View Article and Find Full Text PDFPhosphate limitation has been suggested as a preventive method against biofilms. P-limited feed water was studied as a preventive strategy against biofouling in cooling towers (CTs). Three pilot-scale open recirculating CTs were operated in parallel for five weeks.
View Article and Find Full Text PDFThis study systematically investigated the effect of organic micropollutants (OMPs) on biofouling in forward osmosis (FO) integrating wastewater treatment and seawater dilution. Synthetic seawater (0.6 M sodium chloride) was used as a draw solution and synthetic municipal wastewater as a feed solution.
View Article and Find Full Text PDFWe investigated the impact of conditioning compositions on the way bacteria move and adhere to reverse osmosis (RO) membranes that have been pre-conditioned by organic compounds. We used humic acid (HA), bovine serum albumin (BSA), and sodium alginate (SA) to simulate conditioning layers on the RO membranes. First, we investigated the chemotactic responses of PAO1 to the organic substances and the impact of changes in physicochemical characteristics of pre-conditioned membranes on bacterial attachment.
View Article and Find Full Text PDFThis study evaluated the effects of salinity on the physiological characteristics of Vibrio sp. B2 and biofilm formation on nanofiltration (NF) membrane coupons used in the high recovery seawater desalination process. The test conditions were at 0.
View Article and Find Full Text PDFIn this study, an environmentally friendly compound, hydroxypropyl-beta-cyclodextrin (HP-β-CD) was applied to clean reverse osmosis (RO) membranes fouled by microorganisms. The cleaning with HP-β-CD removed the biofilm and resulted in a flux recovery ratio (FRR) of 102%. As cleaning efficiency is sometimes difficult to determine using flux recovery data alone, attached bacterial cells and extracellular polymeric substances (EPS) were quantified after cleaning the biofouled membrane with HP-β-CD.
View Article and Find Full Text PDFRhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane.
View Article and Find Full Text PDFThis study investigated the physicochemical interactions between a rhamnolipid biosurfactant and a biofilm layer. A concentration of 300 μg mL(-1) of rhamnolipids, which is around the critical micelle concentration value (240 μg mL(-1)), showed great potential for reducing biofilm. The surface free energy between the rhamnolipids and biofilm layer decreased, as did the negative surface charge, due to the removal of negatively charged humic-like, protein-like, and fulvic acid-like substances.
View Article and Find Full Text PDFBiofouling on reverse osmosis (RO) membranes is the most serious problem which affects desalination process efficiency and increases operation cost. The biofouling cannot be effectively removed by the conventional pre-treatment traditionally used in desalination plants. Hybrid membrane systems coupling the adsorption and/or coagulation with low-pressure membranes can be a sustainable pre-treatment in reducing membrane fouling and at the same time improving the feed water quality to the seawater reverse osmosis.
View Article and Find Full Text PDFDue to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor.
View Article and Find Full Text PDF