Multicopy episomal plasmids in yeast, used whenever elevated levels of foreign or homologous gene expression are necessary, are known to be less stable compared to the endogenous 2-μm plasmid they are based on, at least without selective pressure. Considering that rich medium favors growth rate and, simultaneously, is less expensive than selective medium, enhancing stability in non-selective medium is extremely desirable. In this study, we changed the architecture of a multicopy model expression plasmid, creating six isoforms (same size, same DNA content but different positions and orientations of the expression block) and studied mitotic stability, copy number, as well as reporter yEGFP3 expression between isoforms.
View Article and Find Full Text PDFYeast episomal shuttle vectors (YEp type) are commonly used in fundamental research and biotechnology whenever elevated product levels are desired. Their instability, however, poses an impediment not only in industrial scale fermentation. In order to analyse instability which might be linked to plasmid structure, a series of YEp type plasmids that are identical in size has been assembled, differing only in the overall arrangement of the fragments used.
View Article and Find Full Text PDF