Publications by authors named "Kim H Hebelstrup"

Amylopectin (AP)-only (APBS), normal (NBS), and amylose (AM) only (AOBS) barley starches were selected here to investigate catalysis pattern of maltogenic α-amylase (MA) on hydrolyzing AP and AM granular starches. MA shortened starch side chains with degree of polymerization (DP) 11-30. MA-treated APBS exhibited porous granular structures and dramatically increased degree of branching (DB, 17-20 %), and reduced ordered degrees, suggesting high hydrolysis and transglycosylation activities of MA.

View Article and Find Full Text PDF

The potato (Solanum tuberosum) is a staple food worldwide, but modern potato cultivation relies heavily on the use of pesticides to control pests and diseases. However, many wild Solanum species are highly resistant to biotic and abiotic stresses relevant for potato production. Several of those species have been used in potato breeding to confer resistances which has only been moderately successful.

View Article and Find Full Text PDF

is a wild diploid tuber-bearing plant. We here demonstrate transgene-free genome editing of protoplasts and regeneration of gene-edited plants. We use ribonucleoproteins, consisting of Cas9 and sgRNA, assembled in vitro, to target a gene belonging to the nitrate and peptide transporter family.

View Article and Find Full Text PDF

Background: Cereals foods with a high content of dietary fibres or amylose have potential to lower postprandial glucose levels. Optimisation of cereal foods may improve management of type 2 diabetes (T2D).

Methods: We investigated the impact on 4 h postprandial glucose responses given as incremental area under curve (iAUC) of bread made of either 50% RNAi-based (genetically modified) amylose-only barley flour (AmOn) (and 50% wheat flour), 50% hulless barley flour (and 50% wheat flour) or 75% hulless barley (and 25% wheat flour) in subjects with T2D compared with 100% wheat flour bread.

View Article and Find Full Text PDF

This study aimed to prepare a novel colorimetric indicator film from virtually pure (99 %) amylose (AM) and anthocyanins extracted from red cabbage (RCA). The AM used was a unique engineered bulk material extracted from transgenic barley grains. Films produced by solution casting were compared to normal barely starch (NB) and pure barley amylopectin (AP), with amylose contents of 30 % and 0 %, respectively.

View Article and Find Full Text PDF

De novo domestication is a novel trend in plant genetics, where traits of wild or semi-wild species are changed by the use of modern precision breeding techniques so that they conform to modern cultivation. Out of more than 300,000 wild plant species, only a few were fully domesticated by humans in prehistory. Moreover, out of these few domesticated species, less than 10 species dominate world agricultural production by more than 80% today.

View Article and Find Full Text PDF

Oxygen deprivation (hypoxia) in the root due to waterlogging causes profound metabolic changes in the aerial organs depressing growth and limiting plant productivity in barley (Hordeum vulgare L.). Genome-wide analyses in waterlogged wild type (WT) barley (cv.

View Article and Find Full Text PDF

We investigated the effects of drought stress (DS) on maize varieties with different amylose content (AC). In starches with AC of 33 %, DS increased the contents of amylopectin (AP) chains with a degree of polymerization (DP) > 36 and decreased the AP chains with DP ≤ 36, while the AC was unchanged. DS decreased the crystallinity, the thickness of both amorphous and crystalline lamellae, and average granular size.

View Article and Find Full Text PDF

Nanoparticles are more promising than microcapsules as drug carriers because they can be absorbed directly by intestinal epithelial cells, significantly increasing the uptake and bioaccessibility of polyphenols. Our study aimed to use catechin (CC), epicatechin (EC) and proanthocyanidin (PAC) adsorption onto tapioca starch nanoparticles (TSNs), which were prepared by a physical method. These TSN loaded-polyphenols were subjected to adsorption kinetic, adsorption isotherm, adsorption capacity, antioxidant activity, and release analyses.

View Article and Find Full Text PDF

This review systematically documents the major different strategies of generating high-amylose (HAS) starch mutants aiming at providing high resistant starch, by engineering the starch biosynthesis metabolic pathways. We identify three main strategies based on a new representation of the starch structure: 'the building block backbone model': i) suppression of starch synthases for reduction of amylopectin (AP) side-chains; ii) suppression of starch branching enzymes (SBEs) for production of AM-like materials; and iii) suppression of debranching enzymes to restrain the transformation from over-branched pre-AP to more ordered AP. From a biosynthetic perspective, AM generated through the second strategy can be classified into two types: i) normal AM synthesized mainly by regular expression of granule-bound starch synthases, and ii) modified linear AP chains (AM-like material) synthesized by starch synthases due to the suppression of starch branching enzymes.

View Article and Find Full Text PDF

Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances.

View Article and Find Full Text PDF

Somatic embryogenesis in encompasses an induction phase requiring auxin as the inductive signal to promote cellular dedifferentiation and formation of the embryogenic tissue, and a developmental phase favoring the maturation of the embryos. Strigolactones (SLs) have been categorized as a novel group of plant hormones based on their ability to affect physiological phenomena in plants. The study analyzed the effects of synthetic strigolactone GR24, applied during the induction phase, on auxin response and formation of somatic embryos.

View Article and Find Full Text PDF

Thermoplastic, polysaccharide-based plastics are environmentally friendly. However, typical shortcomings include lack of water resistance and poor mechanical properties. Nanocomposite manufacturing using pure, highly linear, polysaccharides can overcome such limitations.

View Article and Find Full Text PDF

To understand how the class 1 phytoglobin is involved in germination process via the modulation of the nitric oxide (NO) metabolism, we performed the analysis of physiological and molecular parameters in the embryos of transgenic barley ( L. cv Golden Promise) plants differing in expression levels of the phytoglobin () gene during the first 48 h of germination. Overexpression of resulted in a higher rate of germination, higher protein content and higher ATP/ADP ratios.

View Article and Find Full Text PDF

Overexpression of phytoglobins (formerly plant hemoglobins) increases the survival rate of plant tissues under hypoxia stress by the following two known mechanisms: (1) scavenging of nitric oxide (NO) in the phytoglobin/NO cycle and (2) mimicking ethylene priming to hypoxia when NO scavenging activates transcription factors that are regulated by levels of NO and O in the N-end rule pathway. To map the cellular and metabolic effects of hypoxia in barley ( L., cv.

View Article and Find Full Text PDF

Wheat grain nitrogen content displays large variations within different pearling fractions of grains because of radial gradients in the protein content. We identified how spatiotemporal mechanisms regulate this. The protein gradients emerged clearly at 19 days after anthesis, with the highest N content in aleurone and seed coat, followed by outer endosperm, whereas the lowest was in middle and inner endosperm.

View Article and Find Full Text PDF

Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies).

View Article and Find Full Text PDF

The biosynthesis of starch granules in plant plastids is coordinated by the orchestrated action of transferases, hydrolases, and dikinases. These enzymes either contain starch-binding domain(s) themselves, or are dependent on direct interactions with co-factors containing starch-binding domains. As a means to competitively interfere with existing starch-protein interactions, we expressed the protein module Carbohydrate-Binding Motif 20 (CBM20), which has a very high affinity for starch, ectopically in barley plastids.

View Article and Find Full Text PDF
Article Synopsis
  • Timely detection of environmental changes is crucial for plant survival, particularly during submergence when gas levels fluctuate. !* -
  • In the study, Arabidopsis thaliana plants sense submergence through ethylene trapping, which enhances the stability of ERFVII transcription factors amid flooding-induced low oxygen levels. !* -
  • The findings indicate that ethylene can increase PHYTOGLOBIN1 levels to deplete nitric oxide, thereby helping plants pre-adapt to low oxygen conditions, revealing important targets for creating flood-resistant crops. !*
View Article and Find Full Text PDF

To investigate the effect of high atmospheric NO concentrations on crop plants and the role of phytoglobins under these conditions, we performed a long-term study on barley 'Golden Promise' wild type (WT), class 1 phytoglobin knockdown (HvPgb1.1-) and class 1 phytoglobin overexpression (HvPgb1.1+) lines.

View Article and Find Full Text PDF

Symbiotic hemoglobins provide O to N -fixing bacteria within legume nodules, but the functions of non-symbiotic hemoglobins or phytoglobins (Glbs) are much less defined. Immunolabeling combined with confocal microscopy of the Glbs tagged at the C-terminus with green fluorescent protein was used to determine their subcellular localizations in Arabidopsis and Lotus japonicus. Recombinant proteins were used to examine nitric oxide (NO) scavenging in vitro and transgenic plants to show S-nitrosylation and other in vivo interactions with NO and abscisic acid (ABA) responses.

View Article and Find Full Text PDF

Background: Nitrogen is one basic element of amino acids and grain protein in wheat. In field experiments, wheat plants were subjected to different timing of nitrogen topdressing treatments: at the stages of emergence of the top fifth leaf (TL5), top third leaf (TL3) and top first leaf (TL1) to test the regulatory effects of nitrogen topdressing timing on grain protein quality. The underlying mechanisms were elucidated by clarifying the relationship between proteolysis in vegetative organs and accumulation of amino acids in the endosperm cavity, conversion of amino acids, and storage protein synthesis in endosperm of wheat grain.

View Article and Find Full Text PDF

Nitrogen fertilization regimes significantly affect both grain quality and yield. Wheat plants were subjected to different application timing of topdressed nitrogen at the emergence of the top fifth (TL5), top third (TL3) and top first leaf (TL1), respectively. The iTRAQ (isobaric tag for relative and absolute quantitation) technology was adopted to obtain the complete proteome of wheat flour and to identify the differentially expressed proteins (DEPs) as regulated by nitrogen topdressing timing.

View Article and Find Full Text PDF

Plant starch is the main energy contributor to the human diet. Its biosynthesis is catalyzed and regulated by co-ordinated actions of several enzymes. Recently, a factor termed Protein Targeting to Starch 1 (PTST1) was identified as being required for correct granule-bound starch synthase (GBSS) localization and demonstrated to be crucial for amylose synthesis in Arabidopsis.

View Article and Find Full Text PDF

Background: Sample preparation is a critical process for proteomic studies. Many efficient and reproducible sample preparation methods have been developed for mass spectrometry-based proteomic analysis of human and animal tissues or cells, but no attempt has been made to evaluate these protocols for plants. We here present an LC-MS/MS-based proteomics study of barley leaf aimed at optimization of methods to achieve efficient and unbiased trypsin digestion of proteins prior to LC-MS/MS based sequencing and quantification of peptides.

View Article and Find Full Text PDF