Neuropeptide FF (NPFF) and neuropeptide VF (NPVF) are octapeptides belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain, including central autonomic and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat brain, including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we examined, using whole cell patch-clamp recordings in the brain slice, the effects of NPFF and NPVF on inhibitory GABAergic synaptic input to parvocellular PVN neurons.
View Article and Find Full Text PDFNeuropeptide FF (NPFF) is an octapeptide belonging to an extended family of RF amide peptides that have been implicated in a wide variety of physiological functions in the brain. NPFF and its receptors are abundantly expressed in the rat brain and spinal cord including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we sought to examine the effects of NPFF on GABAergic inhibitory synaptic input to magnocellular neurosecretory cells (MNCs) of the PVN, which secrete the neurohormones, vasopressin and oxytocin from their terminals in the neurohypophysis.
View Article and Find Full Text PDFThe insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a single-pass transmembrane glycoprotein that plays an important role in the intracellular trafficking of lysosomal enzymes and endocytosis-mediated degradation of IGF-II. However, its role in signal transduction after IGF-II binding remains unclear. In the present study, we report that IGF-II/M6P receptor in the rat brain is coupled to a G-protein and that its activation by Leu27IGF-II, an analog that binds rather selectively to the IGF-II/M6P receptor, potentiates endogenous acetylcholine release from the rat hippocampal formation.
View Article and Find Full Text PDFHuman amylin (hAmylin), a 37-amino acid pancreatic peptide, and amyloid beta protein (A beta), a 39-43 amino acid peptide, abundantly deposited in the brains of Alzheimer's patients, induce neurotoxicity in hippocampal and cortical cultures. Although the mechanism of this neurotoxicity is unknown, both peptides are capable of modulating ion channel function that may result in a disruption of cellular homeostasis. In this study, we examined the effects of hAmylin on whole cell currents in chemically identified neurons from the rat basal forebrain and the interactions of hAmylin-induced responses with those of A beta.
View Article and Find Full Text PDFGalanin, a 29-amino-acid neuropeptide, is generally viewed as an inhibitory neuromodulator in a variety of central systems. Galanin expression is upregulated in the cholinergic basal forebrain nuclei in Alzheimer's disease (AD) and is postulated to play an important role in memory and cognitive function. In this study, application of galanin to acutely dissociated rat neurons from the basal forebrain nucleus diagonal band of Broca (DBB), caused a decrease in whole cell voltage-activated currents in a majority of cells.
View Article and Find Full Text PDF