Publications by authors named "Kim Fook Lee"

Recent development of spectroscopic techniques based on quantum states of light can precipitate many breakthroughs in observing and controlling light-matter interactions in biological materials on a fundamental quantum level. For this reason, the generation of entangled light in biologically produced fluorescent proteins would be promising because of their biocompatibility. Here we demonstrate the generation of polarization-entangled two-photon state through spontaneous four-wave mixing in enhanced green fluorescent proteins.

View Article and Find Full Text PDF

Nonlinear optics based on bulk materials is the current technique of choice for quantum-state generation and information processing. Scaling of nonlinear optical quantum devices is of significant interest to enable quantum devices with high performance. However, it is challenging to scale the nonlinear optical devices down to the nanoscale dimension due to relatively small nonlinear optical response of traditional bulk materials.

View Article and Find Full Text PDF

Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores.

View Article and Find Full Text PDF

We study quantum correlation and interference of fiber-based telecom-band photon pairs with one photon of the pair experiencing multiple scattering in a random medium. We measure joint probability of two-photon detection for signal photon in a normal channel and idler photon in a channel, which is subjected to two independent conditions: standard loss (neutral density filter) and random media. We observe that both conditions degrade the correlation of signal and idler photons, and depolarization of the idler photon in random medium can enhance two-photon interference at certain relative polarization angles.

View Article and Find Full Text PDF

We demonstrate highly efficient photon-pair generation using an 8 mm long hydrogenated amorphous silicon (a-Si:H) waveguide in far-detuned multiple wavelength channels simultaneously, measuring a coincidence-to-accidental ratio as high as 400. We also characterize the contamination from Raman scattering and show it to be insignificant over a spectrum span of at least 5 THz. Our results highlight a-Si:H as a potential high-performance, CMOS-compatible platform for large-scale quantum applications, particularly those based on the use of multiplexed quantum signals.

View Article and Find Full Text PDF

We generate photon pairs at telecom wavelength through a spontaneous four-wave mixing process in a short 10 m of highly nonlinear fiber. We use a counterpropagating scheme to generate a correlated and entangled photon pair. We observe coincidence to accidental-coincidence ratio of 29±3 at room temperature (300 K) and as high as 130±5 when the fiber is cooled to liquid-nitrogen temperature (77 K).

View Article and Find Full Text PDF

We present a new approach for constructing optical phase-space-time-frequency tomography (OPSTFT) of an optical wave field. This tomography can be measured by using a novel four-window optical imaging system based on two local oscillator fields balanced heterodyne detection. The OPSTFT is a Wigner distribution function of two independent Fourier Transform pairs, i.

View Article and Find Full Text PDF

Bipartite polarization correlations of two distant observers are observed by using coherent noise interferences. This is accomplished by mixing a vertically polarized coherent light field with a horizontally polarized coherent noise field in a 50/50 beam splitter. The superposed light fields at each output port of the beam splitter are sent to two observers and then manipulated by using a quarter-wave plate and an analyzer.

View Article and Find Full Text PDF

We present the first quantum controlled-not (cnot) gate realized using a fiber-based indistinguishable photon-pair source in the 1.55 microm telecommunications band. Using this free-space cnot gate, all four Bell states are produced and fully characterized by performing quantum-state tomography, demonstrating the gate's unambiguous entangling capability and high fidelity.

View Article and Find Full Text PDF

We demonstrate the generation of polarization-entangled photon pairs of degenerate frequency for the first time, to the best of our knowledge, in standard optical fiber using a novel dual-pump, counterpropagating configuration. Two-photon interference with >97% visibility is obtained. The purity of the photon source, as characterized by the ratio of coincidence to accidental-coincidence counts, is shown to be as high as 116 under suitable operating conditions.

View Article and Find Full Text PDF

We demonstrate a novel alignment-free all-fiber source for generating telecom-band polarization-entangled photon pairs. Polarization entanglement is created by injecting two relatively delayed, orthogonally polarized pump pulses into a piece of dispersion-shifted fiber, where each one independently engages in four-photon scattering, and then removing any distinguishability between the correlated photon-pairs produced by each pulse at the fiber output. Our scheme uses a Michelson-interferometer configuration with Faraday mirrors to achieve practically desirable features such as ultra-stable performance and turnkey operation.

View Article and Find Full Text PDF

We study the purity of correlated photon pairs generated in a dispersion-shifted fiber at various temperatures. The ratio of coincidence to accidental-coincidence counts greater than 100 can be obtained as the fiber is cooled to liquid-nitrogen temperature (77 K). We then generate polarization-entangled photon pairs by using a compact counterpropagating scheme.

View Article and Find Full Text PDF