Dutch genome diagnostic centers (GDC) use next-generation sequencing (NGS)-based diagnostic applications for the diagnosis of primary immunodeficiencies (PIDs). The interpretation of genetic variants in many PIDs is complicated because of the phenotypic and genetic heterogeneity. To analyze uniformity of variant filtering, interpretation, and reporting in NGS-based diagnostics for PID, an external quality assessment was performed.
View Article and Find Full Text PDFBackground: New, innovative, costly diagnostic methods for patients with primary immunodeficiencies (PID) demand upfront insight into their potential cost savings and added value for individual patients. As such, high quality, comparable economic evaluations are of utmost importance to enable informed decisions. The objective of this review was therefore to create an extensive overview of current costing studies and potential cost savings of early diagnosis in primary immunodeficiency disease.
View Article and Find Full Text PDFBackground: As the application of next generation sequencing (NGS) is moving to earlier stages in the diagnostic pipeline for primary immunodeficiencies (PIDs), re-evaluation of its effectiveness is required. The aim of this study is to systematically review the diagnostic yield of NGS in PIDs.
Methods: PubMed and Embase databases were searched for relevant studies.