The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.
View Article and Find Full Text PDFBackground And Aims: Systemic low-grade inflammation, measured by plasma high-sensitivity C-reactive protein (hsCRP) levels, is an important risk factor for atherosclerotic cardiovascular disease (ASCVD). To date, however, it is unknown whether plasma hsCRP is associated with adverse histological plaque features.
Methods: Plaques were derived during carotid endarterectomy.
Arterioscler Thromb Vasc Biol
March 2024
Background: Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a).
Methods: Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions.
Lipoprotein(a) [Lp(a)] has been established as an independent and causal risk factor for cardiovascular disease. Individuals with elevated levels of Lp(a) (>125 nmol/L; >50 mg/dl) display increased arterial wall inflammation characterized by activation of the endothelium by Lp(a)-carried oxidized phospholipids and recruitment of circulating monocytes. This results in increased secretion of chemoattractants and cytokines, upregulation of adhesion molecules and increased migration of leukocytes through the vessel wall.
View Article and Find Full Text PDFThe endothelium is a crucial regulator of vascular homeostasis by controlling barrier integrity as well acting as an important signal transducer, thereby illustrating that endothelial cells are not inert cells. In the context of atherosclerosis, this barrier function is impaired and endothelial cells become activated, resulting in the upregulation of adhesion molecules, secretion of cytokines and chemokines and internalization of integrins. Finally, this leads to increased vessel permeability, thereby facilitating leukocyte extravasation as well as fostering a pro-inflammatory environment.
View Article and Find Full Text PDFDupuytren's Disease (DD) is a common fibroproliferative disease of the palmar fascia. We previously identified a causal association with a non-synonymous variant (rs1042704, p.D273N) in MMP14 (encoding MT1-MMP).
View Article and Find Full Text PDFBackground: Patients with cardiovascular disease (CVD) and type 2 diabetes (DM2) have a high residual risk for experiencing a major adverse cardiac event. Dysregulation of epigenetic mechanisms of gene transcription in innate immune cells contributes to CVD development but is currently not targeted by therapies. Apabetalone (RVX-208) is a small molecule inhibitor of bromodomain and extra-terminal (BET) proteins-histone acetylation readers that drive pro-inflammatory and pro-atherosclerotic gene transcription.
View Article and Find Full Text PDFCurr Opin Lipidol
December 2020
Purpose Of Review: This review discusses the current developments on epigenetic inhibition as treatment for atherosclerosis.
Recent Findings: The first phase III clinical trial targeting epigenetics in cardiovascular disease (CVD), BETonMACE, using the bromodomain inhibitor apabetalone (RVX-208) showed no significant effect on major adverse cardiovascular events (MACE) in patients with type II diabetes, low HDL-c and a recent acute coronary artery event compared with its placebo arm.
Summary: Preclinical and clinical studies suggest that targeting epigenetics in atherosclerosis is a promising novel therapeutic strategy against CVD.
Background And Purpose: General population studies have shown that elevated Lp(a) (lipoprotein[a]) levels are an emerging risk factor for cardiovascular disease and subsequent cardiovascular events. The role of Lp(a) for the risk of secondary MACE in patients undergoing carotid endarterectomy (CEA) is unknown. Our objective is to assess the association of elevated Lp(a) levels with the risk of secondary MACE in patients undergoing CEA.
View Article and Find Full Text PDFThe endothelium is crucial for maintaining vascular homeostasis and functions as a barrier between blood components and tissue. In atherosclerosis, this barrier function is impaired, which is characterized by secretion of chemoattractants and cytokines, upregulation of adhesion molecules and increased vascular permeability. This facilitates enhanced leukocyte migration through the vessel wall.
View Article and Find Full Text PDFAims: Elevated lipoprotein(a) [Lp(a)] is strongly associated with an increased cardiovascular disease (CVD) risk. We previously reported that pro-inflammatory activation of circulating monocytes is a potential mechanism by which Lp(a) mediates CVD. Since potent Lp(a)-lowering therapies are emerging, it is of interest whether patients with elevated Lp(a) experience beneficial anti-inflammatory effects following large reductions in Lp(a).
View Article and Find Full Text PDF