The aim of this acute cross-sectional study was to quantify the kinematic and kinetic changes that occur during sprint acceleration when lower body WR is worn. Fifteen male rugby athletes (19 years; 181 cm; 91 kg) were assessed during maximal effort over-ground and treadmill sprinting over 20 m under three different loading conditions: 0%, 3% and 5% body mass (BM) added weight attached to the lower body. Treadmill data provided a convenient estimate of kinetic changes in the absence of in-ground force plates.
View Article and Find Full Text PDFWearable resistance training involves added load attached directly to the body during sporting movements. The effects of load position during running are not yet fully established. Therefore, the purpose of this research was to determine spatio-temporal and kinetic characteristics during submaximal running using upper, lower and whole-body wearable resistance (1-10% body mass (BM)).
View Article and Find Full Text PDFObjectives: Arm swing is a distinctive characteristic of sprint-running with the arms working in a contralateral manner with the legs to propel the body in a horizontal direction. The purpose of this study was to determine the acute changes in kinematics and kinetics when wearable resistance (WR) of 1kg (equivalent to ∼1% body mass) was attached to each forearm during over ground short distance (20m) maximal sprint-running.
Design: Cross-sectional study.
Radar technology can be used to perform horizontal force-velocity-power profiling during sprint-running. The aim of this study was to determine the reliability of radar-derived profiling results from short sprint accelerations. Twenty-seven participants completed three 30 m sprints (intra-day analysis), and nine participants completed the testing session on four separate days (inter-day analysis).
View Article and Find Full Text PDFOne variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat.
View Article and Find Full Text PDFBackground: Wearable resistance training (WRT) provides a means of activity- or movement-specific overloading, supposedly resulting in better transference to dynamic sporting performance.
Objective: The purpose of this review was to quantify the acute and longitudinal metabolic, kinematic and/or kinetic changes that occur with WRT during walking, running, sprint running or jumping movements.
Data Sources: PubMed, SPORTDiscus, Web of Science and MEDLINE (EBSCO) were searched using the Boolean phrases (limb OR vest OR trunk) AND (walk* OR run* OR sprint* OR jump* OR bound*) AND (metabolic OR kinetic OR kinematic) AND (load*).
Macadam, P, Simperingham, KD, and Cronin, JB. Acute kinematic and kinetic adaptations to wearable resistance during sprint acceleration. J Strength Cond Res 31(5): 1297-1304, 2017-Wearable resistance (WR) in the form of weighted vests and shorts enables movement-specific sprint running to be performed under load.
View Article and Find Full Text PDFBackground: Advanced testing technologies enable insight into the kinematic and kinetic determinants of sprint acceleration performance, which is particularly important for field-based team-sport athletes. Establishing the reliability and validity of the data, particularly from the acceleration phase, is important for determining the utility of the respective technologies.
Objective: The aim of this systematic review was to explain the utility, reliability, validity and limitations of (1) radar and laser technology, and (2) non-motorised treadmill (NMT) and torque treadmill (TT) technology for providing kinematic and kinetic measures of sprint acceleration performance.