Publications by authors named "Kim Cryns"

Lithium has been the standard pharmacological treatment for bipolar disorder over the last 50 years; however, the molecular targets through which lithium exerts its therapeutic effects are still not defined. We characterized the phenotype of mice with a dysfunctional IMPA1 gene (IMPA1-/-) to study the in vivo physiological functions of IMPA1, in general, and more specifically its potential role as a molecular target in mediating lithium-dependent physiological effects. Homozygote IMPA1-/- mice died in utero between days 9.

View Article and Find Full Text PDF

Lithium is used as treatment for bipolar disorder with particular efficacy in the treatment of mania. Lithium inhibits glycogen synthase kinase 3beta (GSK-3beta) directly or indirectly via stimulation of the kinase Akt-1. We therefore investigated the possibility that transgenic mice overexpressing GSK-3beta could be of relevance to model bipolar disorder.

View Article and Find Full Text PDF

Lithium is a potent mood-stabilizing medication in bipolar disorder. Despite 50 years of clinical use, the mechanism of action is unknown. Multiple effects have been attributed to lithium including the uncompetitive inhibition of inositol monophosphatase (IMPase).

View Article and Find Full Text PDF

Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test.

View Article and Find Full Text PDF

Beta-secretase (BACE1) is the rate-limiting protease for the generation of the amyloid beta-peptide (Abeta) in Alzheimer disease. Mice in which the bace1 gene is inactivated are reported to be healthy. However, the presence of a homologous gene encoding BACE2 raises the possibility of compensatory mechanisms.

View Article and Find Full Text PDF

The epistatic circler mouse (Ecl mouse) is a preexisting mutant, which displays a circling phenotype and hyperactivity. It has been shown that the circling phenotype in this mutant results from a complex inheritance pattern, but the vestibular pathology has not been analyzed. The present study deals with the morphological and functional basis responsible for the circling behavior in the Ecl mouse.

View Article and Find Full Text PDF

This study examined the audiovestibular profile of 11 Wolfram syndrome patients (4 males, 7 females) from 7 families, with identified WFS1 mutations, and the audiometric profile of 17 related heterozygous carriers of WFS1 mutations. Patients with Wolfram syndrome showed a downsloping audiogram and progressive hearing impairment. None of the carriers had sensorineural hearing loss.

View Article and Find Full Text PDF

Hearing impairment (HI) is clinically and genetically very heterogeneous, and auditory genes are discovered at a very rapid pace. The identification of deafness genes is enabling us to understand the molecular process of hearing, and it offers prospects for DNA testing of HI. However, the routine application of these tests is hampered by the large number of genes involved in HI and by the fact that molecular screening of these genes is often quite expensive and time consuming.

View Article and Find Full Text PDF

WFS1 is a novel gene and encodes an 890 amino-acid glycoprotein (wolframin), predominantly localized in the endoplasmic reticulum. Mutations in WFS1 underlie autosomal recessive Wolfram syndrome and autosomal dominant low frequency sensorineural hearing impairment (LFSNHI) DFNA6/14. In addition, several WFS1 sequence variants have been shown to be significantly associated with diabetes mellitus and this gene has also been implicated in psychiatric diseases.

View Article and Find Full Text PDF

The past decade has seen extremely rapid progress in the field of hereditary hearing loss. To date, 80 loci for nonsyndromic hearing loss have been mapped to the human genome. Furthermore, 30 genes have been identified.

View Article and Find Full Text PDF

Wolfram (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness) syndrome is a rare autosomal-recessive neurodegenerative disorder that is characterized by juvenile-onset diabetes mellitus, optic atrophy, diabetes insipidus, and sensorineural hearing impairment. A gene responsible for Wolfram syndrome (WFS1) has been identified on the short arm of chromosome 4 and subsequently mutations in WFS1 have been described. We have screened 12 patients with Wolfram syndrome from nine Dutch families for mutations in the WFS1-coding region by single-strand conformation polymorphism analysis and direct sequencing.

View Article and Find Full Text PDF

Objective: To assess the audiometric profile and speech recognition characteristics in affected members of 2 families with DFNA6/14 harboring heterozygous mutations in the WFS1 gene that cause an autosomal dominant nonsyndromic sensorineural hearing impairment trait.

Design: Family study.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Heterozygous mutations in the WFS1 gene are responsible for autosomal dominant low frequency hearing loss at the DFNA6/14 locus, while homozygous or compound heterozygous mutations underlie Wolfram syndrome. In this study we examine expression of wolframin, the WFS1-gene product, in mouse inner ear at different developmental stages using immunohistochemistry and in situ hybridization. Both techniques showed compatible results and indicated a clear expression in different cell types of the inner ear.

View Article and Find Full Text PDF

Objective: To delineate the phenotype and genotype of an autosomal dominant low-frequency sensorineural nonsyndromic hearing impairment trait in relation to similar traits.

Study Design: Family study, including retrospective case reviews.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Hereditary hearing impairment is an extremely heterogeneous trait, with more than 70 identified loci. Only two of these loci are associated with an auditory phenotype that predominantly affects the low frequencies (DFNA1 and DFNA6/14). In this study, we have completed mutation screening of the WFS1 gene in eight autosomal dominant families and twelve sporadic cases in which affected persons have low-frequency sensorineural hearing impairment (LFSNHI).

View Article and Find Full Text PDF

Vestibular dysfunction is a frequent clinical problem, leading to dizziness and imbalance. Genes play an important role in its etiology, but the genetics are complex and poorly understood. In this study we have analyzed the complex inheritance pattern in the Epistatic circler mouse, which shows circling behavior indicative of vestibular dysfunction in the mouse.

View Article and Find Full Text PDF