Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been widely used in spine fusion surgery. However, high doses of rhBMP-2 delivered with absorbable collagen sponge (ACS) have led to inflammation-related adverse conditions. Polyelectrolyte complex (PEC) control release carrier can substantially reduce the rhBMP-2 dose and complication without compromising fusion.
View Article and Find Full Text PDFScaffold-based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold-cell hybrid that may be called a tissue-engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades.
View Article and Find Full Text PDFObjective And Importance: We have developed novel biodegradable polymer implants by using the rapid prototyping technology fused deposition modeling. Early results of a clinical pilot study for cranioplasty are presented.
Clinical Presentation: Five patients with the diagnosis of chronic subdural hematoma were included in the study.
Fused deposition modeling, a rapid prototyping technology, was used to produce novel scaffolds with honeycomb-like pattern, fully interconnected channel network, and controllable porosity and channel size. A bioresorbable polymer poly(epsilon-caprolactone) (PCL) was developed as a filament modeling material to produce porous scaffolds, made of layers of directionally aligned microfilaments, using this computer-controlled extrusion and deposition process. The PCL scaffolds were produced with a range of channel size 160-700 microm, filament diameter 260-370 microm and porosity 48-77%, and regular geometrical honeycomb pores, depending on the processing parameters.
View Article and Find Full Text PDF