Publications by authors named "Kim Borch"

Biocatalytic degradation of plastic waste is anticipated to play an important role in future recycling systems. However, enzymatic degradation of crystalline poly (ethylene terephthalate) (PET) remains consistently poor. Herein, we employed functional assays to elucidate the molecular underpinnings of this limitation.

View Article and Find Full Text PDF

Enzymatic degradation of cellulosic biomass is a well-established route for the sustainable production of biofuels, chemicals, and materials. A strategy employed by nature and industry to achieve an efficient degradation of cellulose is that cellobiohydrolases (or exocellulases), such as Cel7A, work synergistically with endoglucanases, such as Cel7B, to achieve the complete degradation of cellulose. However, a complete mechanistic understanding of this exo-endo synergy is still lacking.

View Article and Find Full Text PDF

The rate response of poly(ethylene terephthalate) (PET)-hydrolases to increased substrate crystallinity (X ) of PET manifests as a rate-lowering effect that varies significantly for different enzymes. Herein, we report the influence of X on the product release rate of six thermostable PET-hydrolases. All enzyme reactions displayed a distinctive lag phase until measurable product formation occurred.

View Article and Find Full Text PDF

Bioprocessing of polyester waste has emerged as a promising tool in the quest for a cyclic plastic economy. One key step is the enzymatic breakdown of the polymer, and this entails a complicated pathway with substrates, intermediates, and products of variable size and solubility. We have elucidated this pathway for poly(ethylene terephthalate) (PET) and four enzymes.

View Article and Find Full Text PDF

The recent breakthrough in all-atom, protein structure prediction opens new avenues for a range of computational approaches in enzyme design. These new approaches could become instrumental for the development of technical biocatalysts, and hence our transition toward more sustainable industries. Here, we discuss one approach, which is well-known within inorganic catalysis, but essentially unexploited in biotechnology.

View Article and Find Full Text PDF

Interfacial enzyme reactions are common in Nature and in industrial settings, including the enzymatic deconstruction of poly(ethylene terephthalate) (PET) waste. Kinetic descriptions of PET hydrolases are necessary for both comparative analyses, discussions of structure-function relations and rational optimization of technical processes. We investigated whether the Sabatier principle could be used for this purpose.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) degrading enzymes have recently obtained an increasing interest as a means to decompose plastic waste. Here, we have studied the binding of three PET hydrolases on a suspended PET powder under conditions of both enzyme- and substrate excess. A Langmuir isotherm described the binding process reasonably and revealed a prominent affinity for the PET substrate, with dissociation constants consistently below 150 nM.

View Article and Find Full Text PDF

Enzyme reactions, both in Nature and technical applications, commonly occur at the interface of immiscible phases. Nevertheless, stringent descriptions of interfacial enzyme catalysis remain sparse, and this is partly due to a shortage of coherent experimental data to guide and assess such work. In this work, we produced and kinetically characterized 83 cellulases, which revealed a conspicuous linear free energy relationship (LFER) between the substrate binding strength and the activation barrier.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails.

View Article and Find Full Text PDF

While heterogeneous enzyme reactions play an essential role in both nature and green industries, computational predictions of their catalytic properties remain scarce. Recent experimental work demonstrated the applicability of the Sabatier principle for heterogeneous biocatalysis. This provides a simple relationship between binding strength and the catalytic rate and potentially opens a new way for inexpensive computational determination of kinetic parameters.

View Article and Find Full Text PDF

The potential of bioprocessing in a circular plastic economy has strongly stimulated research into the enzymatic degradation of different synthetic polymers. Particular interest has been devoted to the commonly used polyester, poly(ethylene terephthalate) (PET), and a number of PET hydrolases have been described. However, a kinetic framework for comparisons of PET hydrolases (or other plastic-degrading enzymes) acting on the insoluble substrate has not been established.

View Article and Find Full Text PDF

Enzymatic breakdown of plastic has emerged as a promising green technology, and its implementation will require assays that are accurate, reliable and convenient. Here, we assess two principles to monitor the hydrolysis of the common polyester, polyethylene terephthalate (PET). Hydrolysis of PET gives rise to heterogeneous products of different sizes and solubility, and as a result, specific experimental methods detect different activity levels.

View Article and Find Full Text PDF

Background: Fungal beta-glucosidases (BGs) from glucoside hydrolase family 3 (GH3) are industrially important enzymes, which convert cellooligosaccharides into glucose; the end product of the cellulolytic process. They are highly active against the β-1,4 glycosidic bond in soluble substrates but typically reported to be inactive against insoluble cellulose.

Results: We studied the activity of four fungal GH3 BGs on cellulose and found significant activity.

View Article and Find Full Text PDF

The kinetic theory of enzymes that modify insoluble substrates is still underdeveloped, despite the prevalence of this type of reaction both in vivo and industrial applications. Here, we present a steady-state kinetic approach to investigate inhibition occurring at the solid-liquid interface. We propose to conduct experiments under enzyme excess (E0 ≫ S0), i.

View Article and Find Full Text PDF

The glycoside hydrolase (GH) family 6 is an important group of enzymes that constitute an essential part of industrial enzyme cocktails used to convert lignocellulose into fermentable sugars. In nature, enzymes from this family often have a carbohydrate binding module (CBM) from the CBM family 1. These modules are known to promote adsorption to the cellulose surface and influence enzymatic activity.

View Article and Find Full Text PDF

Cellobiohydrolases effectively degrade cellulose and are of biotechnological interest because they can convert lignocellulosic biomass to fermentable sugars. Here, we implemented a fluorescence-based method for real-time measurements of complexation and decomplexation of the processive cellulase Cel7A and its insoluble substrate, cellulose. The method enabled detailed kinetic and thermodynamic analyses of ligand binding in a heterogeneous system.

View Article and Find Full Text PDF
Article Synopsis
  • Cellobiohydrolase Cel7A is an important enzyme that breaks down cellulose by threading the molecule through its tunnel-shaped structure and releasing cellobiose.
  • The study focuses on the key arginine residues (Arg251 and Arg394) in Cel7A, showing that they play a crucial role in product binding through strong hydrogen bonds, contributing about 50% of the binding energy.
  • Mutating these residues decreased enzyme activity and processivity, while also impacting the enzyme's product profile, indicating that these interactions help maintain efficient cellulose breakdown by minimizing non-productive binding events.
View Article and Find Full Text PDF

Thermostable cellulases from glycoside hydrolase family 7 (GH7) are the main components of enzymatic mixtures for industrial saccharification of lignocellulose. Activity improvement of these enzymes via rational design is a promising strategy to alleviate the industrial costs, but it requires detailed structural knowledge. While substantial biochemical and structural data are available for GH7 cellobiohydrolases, endoglucanases are more elusive and only few structures have been solved so far.

View Article and Find Full Text PDF

Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl β- d-lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations.

View Article and Find Full Text PDF

Measurement of steady-state rates (v) is straightforward in standard enzymology with soluble substrate, and it has been instrumental for comparative biochemical analyses within this area. For insoluble substrate, however, experimental values of v remain controversial, and this has strongly limited the amount and quality of comparative analyses for cellulases and other enzymes that act on the surface of an insoluble substrate. In the current work, we have measured progress curves over a wide range of conditions for two cellulases, TrCel6A and TrCel7A from Trichoderma reesei, acting on their natural, insoluble substrate, cellulose.

View Article and Find Full Text PDF

Cellobiohydrolases (CBHs) from glycoside hydrolase family 6 (GH6) make up an important part of the secretome in many cellulolytic fungi. They are also of technical interest, particularly because they are part of the enzyme cocktails that are used for the industrial breakdown of lignocellulosic biomass. Nevertheless, functional studies of GH6 CBHs are scarce and focused on a few model enzymes.

View Article and Find Full Text PDF

Glycoside hydrolase family 7 (GH7) cellulases are some of the most efficient degraders of cellulose, making them particularly relevant for industries seeking to produce renewable fuels from lignocellulosic biomass. The secretome of the cellulolytic model fungus contains two GH7s, termed TrCel7A and TrCel7B. Despite having high structural and sequence similarities, the two enzymes are functionally quite different.

View Article and Find Full Text PDF

The cellobiohydrolase (CBH) Cel6A is an important component of enzyme cocktails for industrial degradation of lignocellulosic biomass. However, the kinetics of this enzyme acting on its natural, insoluble substrate remains sparsely investigated. Here, we studied Cel6A from Trichoderma reesei with respect to adsorption, processivity, and kinetics both in the steady-state and pre-steady-state regimes, on microcrystalline and amorphous cellulose.

View Article and Find Full Text PDF

We have measured activity and substrate affinity of the thermostable cellobiohydrolase, Cel7A, from Rasamsonia emersonii over a broad range of temperatures. For the wild type enzyme, which does not have a Carbohydrate Binding Module (CBM), higher temperature only led to moderately increased activity against cellulose, and we ascribed this to a pronounced, temperature induced desorption of enzyme from the substrate surface. We also tested a "high affinity" variant of R.

View Article and Find Full Text PDF