Mercury is a highly toxic trace metal that can accumulate in aquatic ecosystems and when resent at high concentrations can pose risks to both aquatic life and humans consuming contaminated fish. This research explores the use of the metalloregulatory protein MerR, known for its high affinity and selectivity toward mercury, in a novel application. Through a cell surface engineering approach, MerR was displayed on cells of green alga Chlamydomonas reinhardtii.
View Article and Find Full Text PDFAsymmetrical flow field-flow fractionation (AF4) efficiently separates various macromolecules and nano-components of natural waters according to their hydrodynamic sizes. The online coupling of AF4 with fluorescence (Fluo) and UV absorbance (UV) detectors (FluoD and UVD, respectively) and inductively coupled plasma-mass spectrometry (ICP-MS) provides multidimensional information. This makes it a powerful tool to characterize and quantify the size distributions of organic and inorganic nano-sized components and their interaction with trace metals.
View Article and Find Full Text PDFThe present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm.
View Article and Find Full Text PDF