The diversity of disease presentations warrants one single assay for detection and delineation of various genomic disorders. Herein, we describe a gel-free and biotin-capture-free mate-pair method through coupling Controlled Polymerizations by Adapter-Ligation (CP-AL). We first demonstrated the feasibility and ease-of-use in monitoring DNA nick translation and primer extension by limiting the nucleotide input.
View Article and Find Full Text PDFNucleic acid ligases are crucial enzymes that repair breaks in DNA or RNA during synthesis, repair and recombination. Various genomic tools have been developed using the diverse activities of DNA/RNA ligases. Herein, we demonstrate a non-conventional ability of T4 DNA ligase to insert 5' phosphorylated blunt-end double-stranded DNA to DNA breaks at 3'-recessive ends, gaps, or nicks to form a Y-shaped 3'-branch structure.
View Article and Find Full Text PDFTranscriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation.
View Article and Find Full Text PDFDynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts.
View Article and Find Full Text PDFBruUV-seq utilizes UV light to introduce transcription-blocking DNA lesions randomly in the genome prior to bromouridine-labeling and deep sequencing of nascent RNA. By inhibiting transcription elongation, but not initiation, pre-treatment with UV light leads to a redistribution of transcription reads resulting in the enhancement of nascent RNA signal towards the 5'-end of genes promoting the identification of transcription start sites (TSSs). Furthermore, transcripts associated with arrested RNA polymerases are protected from 3'-5' degradation and thus, unstable transcripts such as putative enhancer RNA (eRNA) are dramatically increased.
View Article and Find Full Text PDFThe rate of transcription elongation plays an important role in the timing of expression of full-length transcripts as well as in the regulation of alternative splicing. In this study, we coupled Bru-seq technology with 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) to estimate the elongation rates of over 2000 individual genes in human cells. This technique, BruDRB-seq, revealed gene-specific differences in elongation rates with a median rate of around 1.
View Article and Find Full Text PDFSensitive, inexpensive, and rapid protease activity assays are of great merit for clinical diagnostics. Detection of protease-based toxins produced by Clostridium botulinum and Bacillus anthracis represents a particularly challenging task, as exceptional sensitivity is a prerequisite because of the extreme potency of the toxins. Here we present an inexpensive and sensitive assay platform for activity-based protease quantification utilizing filamentous bacteriophage as an exponentially amplifiable reporter and its application to the detection of these bacterial toxins.
View Article and Find Full Text PDF