We explore the photophysical properties of a family of Ru(II) complexes, , designed as photosensitizers (PSs) for photodynamic therapy (PDT). The complexes incorporate a 1-imidazo[4,5-][1,10]-phenanthroline (ip) ligand appended to one or more thiophene rings. One of the complexes studied herein, (known as TLD1433), is currently in phase II human clinical trials for treating bladder cancer by PDT.
View Article and Find Full Text PDFUnlabelled: TLD1433 is the first Ru(II) complex to be tested as a photodynamic therapy agent in a clinical trial. In this contribution we study TLD1433 in the context of structurally-related Ru(II)-imidozo[4,5-f][1,10]phenanthroline (ip) complexes appended with thiophene rings to decipher the unique photophysical properties which are associated with increasing oligothiophene chain length. Substitution of the ip ligand with ter- or quaterthiophene changes the nature of the long-lived triplet state from metal-to-ligand charge-transfer to ππ* character.
View Article and Find Full Text PDFThis contribution describes the excited-state properties of an Osmium-complex when taken up into human cells. The complex 1 [Os(bpy) (IP-4T)](PF ) with bpy=2,2'-bipyridine and IP-4T=2-{5'-[3',4'-diethyl-(2,2'-bithien-5-yl)]-3,4-diethyl-2,2'-bithiophene}imidazo[4,5-f][1,10]phenanthroline) can be discussed as a candidate for photodynamic therapy in the biological red/NIR window. The complex is taken up by MCF7 cells and localizes rather homogeneously within in the cytoplasm.
View Article and Find Full Text PDFA ruthenium complex with a half-sandwich geometry ([(p-cymene)Ru(Cl)(curcuminoid)]) was synthesized, characterized, and investigated regarding its ultrafast photophysics. These photophysical investigations of the complex revealed a weak and short-lived emission from the initially populated MLCT state and solvent-dependent photoinduced dynamics, where the secondarily populated MC state is stabilized by nonpolar solvents. Overall the decay of the dd-MC state to the ground state is completed within picoseconds.
View Article and Find Full Text PDFEight difluoroboron complexes of curcumin derivatives carrying alkyne groups containing substituents have been synthesized following an optimised reaction pathway. The complexes were received in yields up to 98% and high purities. Their properties as fluorescent dyes have been investigated.
View Article and Find Full Text PDFThe excited state properties of three heteroleptic copper(I) xantphos 4H-imidazolate complexes are investigated by means of femtosecond and nanosecond time-resolved transient absorption spectroscopy in dichloromethane solution. The subpicosecond spectral changes observed after excitation into the MLCT absorption band are interpreted as intersystem crossing from the singlet to the triplet manifold. This interpretation is corroborated by DFT and TD-DFT results, indicating a comparable molecular geometry in the ground state (and hence the nonrelaxed singlet state) and the excited triplet state.
View Article and Find Full Text PDFThe class of cyclic lipopeptide natural products consists of compounds with a diverse range of bioactivities. In this study, we elucidated the structure of the cyclic lipopeptide anikasin using X-ray crystallography, analyzed its biosynthetic gene cluster, and investigated its natural role in the interaction between the producer strain Pseudomonas fluorescens HKI0770 and protozoal predators. These results led to the conclusion that anikasin has dual functionality enabling swarming motility and acting as a niche amoebicide, which effectively inhibits the social amoeba Polysphondylium violaceum and protects the producer strain from protozoal grazing.
View Article and Find Full Text PDFIn this study femtosecond and nanosecond time-resolved transient absorption spectroscopy was used to investigate the influence of ionic strength and complexity on the excited state dynamics of a Ru(II)-based metal-organic dyad. The bis-heteroleptic complex [Ru(bpy)(ippy)] (1), where bpy = 2,2'-bipyridine and ippy = 2-(1-pyrenyl-1H-imidazo[4,5-f][1,10]phenanthroline, is a potent photosensitizer for in vitro photodynamic therapy (PDT) and photodynamic inactivation (PDI) of microorganisms owing to a long-lived triplet excited state derived from a metal-to-ligand charge-transfer (MLCT) state that is equilibrium with an intraligand (IL) state. The prolonged lifetime provides ample opportunity for bimolecular quenching of this state by oxygen; thus singlet oxygen (O) sensitization is very efficient.
View Article and Find Full Text PDF