Atoms can form a molecule by sharing their electrons in binding orbitals. These electrons are entangled. Is there a way to break a molecular bond and obtain atoms in their ground state that are spatially separated and still entangled? Here, we show that it is possible to prepare these spatially separated, entangled atoms on femtosecond time scales from single oxygen molecules.
View Article and Find Full Text PDFX-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances.
View Article and Find Full Text PDFWe report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted.
View Article and Find Full Text PDFThe influence of the magnetic component of the driving electromagnetic field is often neglected when investigating light-matter interaction. We show that the magnetic component of the light field plays an important role in nonsequential double ionization, which serves as a powerful tool to investigate electron correlation. We investigate the magnetic-field effects in double ionization of xenon atoms driven by near-infrared ultrashort femtosecond laser pulses and find that the mean forward shift of the electron momentum distribution in light-propagation direction agrees well with the classical prediction, where no under-barrier or recollisional nondipole enhancement is observed.
View Article and Find Full Text PDFThe photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules, the photoelectron energy does not depend on the electron's emission direction, but theoretical studies have questioned this since 1990.
View Article and Find Full Text PDFWe experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the 2U_{p} classical cutoff is found to be vastly different from that below this cutoff, where U_{p} is the ponderomotive potential of the driving laser field. A local minimum structure in the momentum dependence of the nondipole shift above the cutoff is identified for the first time.
View Article and Find Full Text PDFHow long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields.
View Article and Find Full Text PDFThe photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree-Fock approximation.
View Article and Find Full Text PDFWe report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions.
View Article and Find Full Text PDFPhotoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of this process poses many open questions. Experiments have found time delays in the attosecond (10 seconds) domain between electron ejection from different orbitals, from different electronic bands, or in different directions.
View Article and Find Full Text PDFThe investigation of the photoelectron circular dichroism (PECD) in the strong field regime (800 nm, 6.9 × 10 W/cm) on methyloxirane (MOX) reveals a flip of the sign of PECD between different fragmentation channels. This finding is of great importance for future experiments and applications in chemistry or pharmacy using PECD in the strong field regime as analysis method.
View Article and Find Full Text PDFThis article shows how the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) or the "reaction microscope" technique can be used to distinguish between enantiomers (stereoisomers) of simple chiral species on the level of individual molecules. In this approach, a gaseous molecular jet of the sample expands into a vacuum chamber and intersects with femtosecond (fs) laser pulses. The high intensity of the pulses leads to fast multiple ionization, igniting a so-called Coulomb Explosion that produces several cationic (positively charged) fragments.
View Article and Find Full Text PDF