Publications by authors named "Kilian Chandelon"

Purpose: A stereoscopic surgical video stream consists of left-right image pairs provided by a stereo endoscope. While the surgical display shows these image pairs synchronised, most capture cards cause de-synchronisation. This means that the paired left and right images may not correspond once used in downstream tasks such as stereo depth computation.

View Article and Find Full Text PDF

Purpose: To detect specularities as elliptical blobs in endoscopy. The rationale is that in the endoscopic setting, specularities are generally small and that knowing the ellipse coefficients allows one to reconstruct the surface normal. In contrast, previous works detect specular masks as free-form shapes and consider the specular pixels as nuisance.

View Article and Find Full Text PDF

Introduction: Minimally invasive partial nephrectomy (MIPN) has become the standard of care for localized kidney tumors over the past decade. The characteristics of each tumor, in particular its size and relationship with the excretory tract and vessels, allow one to judge its complexity and to attempt predicting the risk of complications. The recent development of virtual 3D model reconstruction and computer vision has opened the way to image-guided surgery and augmented reality (AR).

View Article and Find Full Text PDF

Purpose: We present a novel automatic system for markerless real-time augmented reality. Our system uses a dynamic keyframe database, which is required to track previously unseen or appearance-changing anatomical structures. Our main objective is to track the organ more accurately and over a longer time frame through the surgery.

View Article and Find Full Text PDF

Background: The advent of digital medical imaging, medical image analysis and computer vision has opened the surgeon horizons with the possibility to add virtual information to the real operative field. For oral and maxillofacial surgeons, overlaying anatomical structures to protect (such as teeth, sinus floors, inferior and superior alveolar nerves) or to remove (such as cysts, tumours, impacted teeth) presents a real clinical interest.

Material And Methods: Through this work, we propose a proof-of-concept markerless augmented reality system for oral and maxillofacial surgery, where a virtual scene is generated preoperatively and mixed with reality to reveal the location of hidden anatomical structures intraoperatively.

View Article and Find Full Text PDF