Publications by authors named "Kilho Yu"

The advent of special types of polymeric semiconductors, known as "polymer blends," presents new opportunities for the development of next-generation electronics based on these semiconductors' versatile functionalities in device applications. Although these polymer blends contain semiconducting polymers (SPs) mixed with a considerably high content of insulating polymers, few of these blends unexpectedly yield much higher charge carrier mobilities than those of pure SPs. However, the origin of such an enhancement has remained unclear owing to a lack of cases exhibiting definite improvements in charge carrier mobility, and the limited knowledge concerning the underlying mechanism thereof.

View Article and Find Full Text PDF

Flexible organic photovoltaics (OPVs) are promising power sources for wearable electronics. However, it is challenging to simultaneously achieve high efficiency as well as good stability under various stresses. Herein, we demonstrate the fabrication of highly efficient (efficiency, 13.

View Article and Find Full Text PDF

Next-generation biomedical devices will need to be self-powered and conformable to human skin or other tissue. Such devices would enable the accurate and continuous detection of physiological signals without the need for an external power supply or bulky connecting wires. Self-powering functionality could be provided by flexible photovoltaics that can adhere to moveable and complex three-dimensional biological tissues and skin.

View Article and Find Full Text PDF

Realizing industrial-scale, large-area photovoltaic modules without any considerable performance losses compared with the performance of laboratory-scale, small-area perovskite solar cells (PSCs) has been a challenge for practical applications of PSCs. Highly sophisticated patterning processes for achieving series connections, typically fabricated using printing or laser-scribing techniques, cause unexpected efficiency drops and require complicated manufacturing processes. We successfully fabricated high-efficiency, large-area PSC modules using a new electrochemical patterning process.

View Article and Find Full Text PDF

Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future "flexible" and "transparent" electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation.

View Article and Find Full Text PDF

Highly efficient P-I-N type perovskite/bulk-heterojunction (BHJ) integrated solar cells (ISCs) with enhanced fill factor (FF) (≈80%) and high near-infrared harvesting (>30%) are demonstrated by optimizing the BHJ morphology with a novel n-type polymer, N2200, and a new solvent-processing additive. This work proves the feasibility of highly efficient ISCs with panchromatic absorption as a new photovoltaic architecture and provides important design rules for optimizing ISCs.

View Article and Find Full Text PDF

Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1).

View Article and Find Full Text PDF

A new tandem architecture for printable photovoltaics using a versatile organic nanocomposite containing photoactive and interfacial materials is demonstrated. The nanocomposite forms an ideal self-organized recombination layer via a spontaneous vertical phase separation, which yields a simplified tandem structure fabricated with only four component layers and a high tandem efficiency of 10.8%.

View Article and Find Full Text PDF

Organic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (μ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs).

View Article and Find Full Text PDF

Unlike typical inorganic semiconductors with a crystal structure, the charge dynamics of π-conjugated polymers (π-CPs) are severely limited by the presence of amorphous portions between the ordered crystalline regions. Thus, the formation of interconnected pathways along crystallites of π-CPs is desired to ensure highly efficient charge transport in printable electronics. Here we report the formation of nano-crystallite networks in π-CP films by employing novel template-mediated crystallization (TMC) via polaron formation and electrostatic interaction.

View Article and Find Full Text PDF

Vertically self-assembled bilayers with an interfacial bottom layer and a photoactive top layer are demonstrated via a single coating step of a blend composed of an amine-containing nonconjugated polyelectrolyte (NPE) and an organic electron donor-acceptor bulk heterojunction composite. The self-assembled NPE layer reduces the work function of an indium tin oxide (ITO) cathode, which leads to efficient inverted organic solar cells without any additional interface engineering of the ITO.

View Article and Find Full Text PDF