Recent years have witnessed an explosion of the single-cell biochemical toolbox including chromosome conformation capture (3C)-based methods that provide novel insights into chromatin spatial organization in individual cells. The observations made with these techniques revealed that topologically associating domains emerge from cell population averages and do not exist as static structures in individual cells. Stochastic nature of the genome folding is likely to be biologically relevant and may reflect the ability of chromatin fibers to adopt a number of alternative configurations, some of which could be transiently stabilized and serve regulatory purposes.
View Article and Find Full Text PDFChromatin is reprogrammed after fertilization to produce a totipotent zygote with the potential to generate a new organism. The maternal genome inherited from the oocyte and the paternal genome provided by sperm coexist as separate haploid nuclei in the zygote. How these two epigenetically distinct genomes are spatially organized is poorly understood.
View Article and Find Full Text PDFSexual reproduction culminates in a totipotent zygote with the potential to produce a whole organism. Sperm chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications generate a totipotent embryo. Active DNA demethylation of the paternal genome has been proposed to involve base excision and DNA repair-based mechanisms.
View Article and Find Full Text PDFSister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation in mitosis and meiosis [1]. Rec8-containing cohesin, bound to Smc3/Smc1α or Smc3/Smc1β, maintains bivalent cohesion in mammalian meiosis [2-6]. In females, meiotic DNA replication and recombination occur in fetal oocytes.
View Article and Find Full Text PDFDuring meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes.
View Article and Find Full Text PDFActivation of anaphase-promoting complex/cyclosome (APC/C(Cdc20)) by Cdc20 is delayed by the spindle assembly checkpoint (SAC). When all kinetochores come under tension, the SAC is turned off and APC/C(Cdc20) degrades cyclin B and securin, which activates separase [1]. The latter then cleaves cohesin holding sister chromatids together [2].
View Article and Find Full Text PDFSince the dissolution of sister chromatid cohesion by separase and cyclin B destruction is irreversible, it is essential to delay both until all chromosomes have bioriented on the mitotic spindle. Kinetochores that are not correctly attached to the spindle generate the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C) and blocks anaphase onset. This process is known as the spindle assembly checkpoint (SAC).
View Article and Find Full Text PDFThe first differentiation event in mammalian development gives rise to the blastocyst, consisting of two cell lineages that have also segregated in how the cell cycle is structured. Pluripotent cells of the inner cell mass divide mitotically to retain a diploid DNA content, but the outer trophoblast cells can amplify their genomes more than 500-fold by undergoing multiple rounds of DNA replication, completely bypassing mitosis. Central to this striking divergence in cell cycle control is the E3 ubiquitin-ligase activity of the anaphase-promoting complex or cyclosome (APC/C).
View Article and Find Full Text PDFCohesin enables post-replicative DNA repair and chromosome segregation by holding sister chromatids together from the time of DNA replication in S phase until mitosis. There is growing evidence that cohesin also forms long-range chromosomal cis-interactions and may regulate gene expression in association with CTCF, mediator or tissue-specific transcription factors. Human cohesinopathies such as Cornelia de Lange syndrome are thought to result from impaired non-canonical cohesin functions, but a clear distinction between the cell-division-related and cell-division-independent functions of cohesion--as exemplified in Drosophila--has not been demonstrated in vertebrate systems.
View Article and Find Full Text PDFGeminin is an essential cell-cycle protein that is only present from S phase to early mitosis in metazoan somatic cells. Genetic ablation of geminin in the mouse results in preimplantation embryonic lethality because pluripotent cells fail to form and all cells differentiate to trophoblast. Here we show that geminin is present in G1 phase of mouse pluripotent cells in contrast to somatic cells, where anaphase-promoting complex/cyclosome (APC/C)-mediated proteasomal destruction removes geminin in G1.
View Article and Find Full Text PDFDuring female meiosis, bivalent chromosomes are thought to be held together from birth until ovulation by sister chromatid cohesion mediated by cohesin complexes whose ring structure depends on kleisin subunits, either Rec8 or Scc1. Because cohesion is established at DNA replication in the embryo, its maintenance for such a long time may require cohesin turnover. To address whether Rec8- or Scc1-containing cohesin holds bivalents together and whether it turns over, we created mice whose kleisin subunits can be cleaved by TEV protease.
View Article and Find Full Text PDF