We have previously demonstrated that small molecular transfer, such as glucose, between hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs) and vascular endothelial cells via gap junctions constitutes an important mechanism of stem cell therapy. Cell metabolites are high-potential small-molecule candidates that can be transferred to small molecules between stem cells and vascular endothelial cells. Here, we investigated the differences in metabolite levels between stem cells (HSCs and MSCs), vascular endothelial cells, and the levels of circulating non-hematopoietic white blood cells (WBCs).
View Article and Find Full Text PDFThis study was conducted to evaluate the safety and efficacy of human peripheral blood CD34 positive (CD34) cells transplanted into a murine chronic stroke model to obtain pre-clinical proof of concept, prior to clinical testing. Granulocyte colony stimulating factor (G-CSF) mobilized human CD34 cells [1 × 10 cells in 50 μl phosphate-buffered saline (PBS)] were intravenously (iv) or intra-carotid arterially (ia) transplanted 4 weeks after the induction of stroke (chronic stage), and neurological function was evaluated. In this study, severe combined immune deficiency (SCID) mice were used to prevent excessive immune response after cell therapy.
View Article and Find Full Text PDFCirculating white blood cells (WBC) contribute toward maintenance of cerebral metabolism and brain function. Recently, we showed that during aging, transcription of metabolism related genes, including energy source transports, in the brain significantly decreased at the hippocampus resulting in impaired neurological functions. In this article, we investigated the changes in RNA transcription of metabolism related genes (glucose transporter 1 [Glut1], Glut3, monocarboxylate transporter 4 [MCT4], hypoxia inducible factor 1-α [Hif1-α], prolyl hydroxylase 3 [PHD3] and pyruvate dehydrogenase kinase 1 [PDK1]) in circulating WBC and correlated these with brain function in mice.
View Article and Find Full Text PDFObjectives: Bone marrow mononuclear cells (BM-MNC) show a significant therapeutic effect in combination with training even in the chronic phase of stroke. However, the mechanism of this combination therapy has not been investigated. Here, we examined its effects on brain metabolism in chronic stroke mice.
View Article and Find Full Text PDFWe have shown previously that transplanted bone marrow mononuclear cells (BM-MNC), which are a cell fraction rich in hematopoietic stem cells, can activate cerebral endothelial cells via gap junction-mediated cell-cell interaction. In the present study, we investigated such cell-cell interaction between mesenchymal stem cells (MSC) and cerebral endothelial cells. In contrast to BM-MNC, for MSC we observed suppression of vascular endothelial growth factor uptake into endothelial cells and transfer of glucose from endothelial cells to MSC in vitro.
View Article and Find Full Text PDFThere is no effective treatment for chronic stroke if the acute or subacute phase is missed. Rehabilitation alone cannot easily achieve a dramatic recovery in function. In contrast to significant therapeutic effects of bone marrow mononuclear cells (BM-MNC) transplantation for acute stroke, mild and non-significant effects have been shown for chronic stroke.
View Article and Find Full Text PDFWe recently reported that intravenous bone marrow mononuclear cell (BM-MNC) transplantation in stroke improves neurological function through improvement of cerebral metabolism. Cerebral metabolism is known to diminish with aging, and the reduction of metabolism is one of the presumed causes of neurological decline in the elderly. We report herein that transcription of glucose transporters, monocarboxylate transporters, and Na/K-ATPase is downregulated in the hippocampus of aged mice with impaired neurological functions.
View Article and Find Full Text PDFBackground and Purpose- Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells and have been widely used in experimental therapies for patients with ischemic diseases. Activation of angiogenesis is believed to be one of major BM-MNC mode of actions, but the essential mechanism by which BM-MNCs activate angiogenesis have hitherto been elusive. The objective of this study is to reveal the mechanism how BM-MNCs activate angiogenesis.
View Article and Find Full Text PDFObjectives: In this study, we investigated whether monocyte CD64 (mCD64) expression is correlated with disease activity in patients with adult-onset Still disease (AOSD) and whether it could be used to distinguish between active and inactive disease states.
Methods: We reviewed a series of 10 patients with a definite diagnosis of AOSD, recruited from January 2013 to December 2016. We used flow cytometry to quantitatively measure mCD64 expression levels in patients presenting with active and inactive disease states and statistically analyzed the corresponding changes.
Background and Purpose- The beneficial effects of bone marrow mononuclear cell (BM-MNC) transplantation in preclinical experimental stroke have been reliably demonstrated. However, only overall modest effects in clinical trials were observed. We have investigated and reported a cause of the discrepancy between the preclinical and clinical studies.
View Article and Find Full Text PDFA 26-year-old woman with Takayasu's arteritis (TAK) experienced back and neck pain during tocilizumab (TCZ) treatment. The levels of C-reactive protein were normal, and ultrasonography revealed no significant changes. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) showed signal enhancement in the walls of several arteries.
View Article and Find Full Text PDFAims/introduction: Circulating progenitor cells, including CD34 positive (CD34(+)) cells, play a key role in neovascularisation and the maintenance of vascular endothelial function. Several lines of evidence show an association between decreased levels of circulating CD34(+) cells and cardiovascular disease. However, the contribution of circulating CD34(+) cells to the occurrence of cardiovascular events in diabetic patients remains unclear.
View Article and Find Full Text PDFObjective: Interferon alpha (IFN-α) is a key cytokine associated with systemic lupus erythematosus (SLE). IFN-α induces the expression of CD64 on monocytes (mCD64). Although enhanced mCD64 expression has been reported in patients with SLE, it has never been assessed quantitatively.
View Article and Find Full Text PDFBackground: The purpose of the present study was to investigate the existence of microstructure abnormalities in the white matter circuit in stroke patients and its relationship to depressive episodes. To target the prevention of depression, we also investigated the relationship between lymphocyte subsets and cerebral abnormalities in patients.
Methods: Participants included 18 patients with acute ischemic stroke and 22 healthy control subjects.
Background Aims: Human mesenchymal stromal cells (MSC) have considerable potential for cell-based therapies, including applications for regenerative medicine and immune suppression in graft-versus-host disease (GvHD). However, harvesting cells from the human body can cause iatrogenic disorders and in vitro expansion of MSC carries a risk of tumorigenesis and/or expansion of unexpected cell populations.
Methods: Given these problems, we have focused on umbilical cord, a tissue obtained with few ethical problems that contains significant numbers of MSC.
Prior to differentiation, embryonic stem (ES) cells in culture are maintained in a so-called "undifferentiated" state, allowing derivation of multiple downstream cell lineages when induced in a directed manner, which in turn grants these cells their "pluripotent" state. The current work is based on a simple observation that the initial culture condition for maintaining mouse ES cells in an "undifferentiated" state does impact on the differentiation propensity of these cells, in this case to a neuronal fate. We point out the importance in judging the "pluripotency" of a given stem cell culture, as this clearly demonstrated that the "undifferentiated" state of these cells is not necessarily a "pluripotent" state, even for a widely used mouse ES cell line.
View Article and Find Full Text PDFBAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
March 2011
Circulating bone marrow-derived immature cells, including endothelial progenitor cells, have been implicated in homeostasis of the microvasculature. Decreased levels of circulating endothelial progenitor cells, associated with aging and/or cardiovascular risk factors, correlate with poor clinical outcomes in a range of cardiovascular diseases. Herein, we transplanted bone marrow cells from young stroke-prone spontaneously hypertensive rats (SHR-SP) into aged SHR-SP, the latter not exposed to radiation or chemotherapy.
View Article and Find Full Text PDFIncreasing evidence points to accelerated neurogenesis after stroke, and support of such endogenous neurogenesis has been shown to improve stroke outcome in experimental animal models. The present study analyses post-stroke cerebral cortex after cardiogenic embolism in autoptic human brain. Induction of nestin- and musashi-1-positive cells, potential neural stem/progenitor cells, was observed at the site of ischemic lesions from day 1 after stroke.
View Article and Find Full Text PDFAims: Circulating progenitor cells such as CD34+ cells play a key role in maintenance of vascular endothelial function and neovascularization, and a decrease in the number of CD34+ cells is associated with cardiovascular disease. However, the contribution of circulating progenitor cells to microvascular disease, such as diabetic nephropathy, is unclear. This study was therefore designed to clarify the association between diabetic nephropathy and circulating CD34+ cells.
View Article and Find Full Text PDFCirculating CD34-positive (CD34(+)) cells, a population that includes endothelial progenitor cells, are believed to contribute to vascular homeostasis. Here we determine the prognostic value of CD34(+) cell measurements in 216 chronic hemodialysis patients. A total of 43 cardiovascular events and 13 deaths occurred over an average 23 months follow-up in this cohort.
View Article and Find Full Text PDFIncreasing evidence points to a role for circulating endothelial progenitors, including populations of CD34-positive (CD34(+)) cells present in peripheral blood, in vascular homeostasis and neovascularization. In this report, circulating CD34(+) cells in individuals with a history of cerebral infarction were correlated with changes in neurologic function over a period of 1 year. Patients with decreased levels of CD34(+) cells displayed significant worsening in neurologic function, evaluated by the Barthel Index and Clinical Dementia Rating.
View Article and Find Full Text PDFIncreasing evidence points to a role for circulating endothelial progenitor cells, including populations of CD34-positive (CD34(+)) cells, in maintenance of cerebral blood flow. In this study, we investigated the link between the level of circulating CD34(+) cells and neovascularization at ischemic brain. Compared with control subjects, a remarkable increase of circulating CD34(+) cells was observed in patients with angiographic moyamoya vessels, although no significant change was observed in patients with major cerebral artery occlusion (or severe stenosis) but without moyamoya vessels.
View Article and Find Full Text PDF