Wetland plants are important components that influence the biogeochemistry of wetland ecosystems. Therefore, remediation performance in wetlands can differ depending on the growth forms of plants. In this study, the effects of Eichhornia crassipes (floating plant) and Ceratophyllum demersum (submerged plant) on the wetland soil and water environments were investigated using a microcosm study with simulated hydrology of retention-type wetlands between rainfall events.
View Article and Find Full Text PDFThe effects of humic acid (HA) on heavy-metal uptake by plants and degradation of total petroleum hydrocarbons (TPHs) in a wetland microcosm planted with Phragmites communis were evaluated by comparing waterlogged soils and water-drained upland soils. Experiments were conducted on soils artificially contaminated with heavy metals (Pb, Cu, Cd, Ni) and diesel fuel. HA showed a positive influence on biomass increase for all conditions, but more for belowground than aboveground biomass, and lower in contaminated than uncontaminated soil.
View Article and Find Full Text PDFThe use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb, 200 mg/kg for Cu, 12 mg/kg for Cd, and 160 mg/kg for Ni. Three plant species, Brassica campestris, Festuca arundinacea, and Helianthus annuus, were selected for the phytodegradation experiment.
View Article and Find Full Text PDFLandfill gases could be vented through a layer of landfill cover soil that could serve as a biofilter to oxidize methane to carbon dioxide and water. Properly managed landfill cover soil layers may reduce atmospheric CH4 emissions from landfills. In the present study, the effects of earthworm cast and powdered activated carbon (PAC) on the CH4 removal capacity of the landfill cover soil was investigated.
View Article and Find Full Text PDFJ Contam Hydrol
September 2004
Phytoremediation has the potential to enhance clean up of land contaminated by various pollutants. A mathematical model that includes a two-fluid phase flow model of water flow as well as a two-region soil model of contaminant reactions was developed and applied to various bioremediation scenarios in the unsaturated zone, especially to plant-aided bioremediation. To investigate model behavior and determine the main parameters and mechanisms that affect bioremediation in unplanted and planted soils, numerical simulations of theoretical scenarios were conducted before applying the model to field data.
View Article and Find Full Text PDFA contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using 14C-TNT.
View Article and Find Full Text PDFThe use of vegetation to remediate soil contaminated by recalcitrant hydrocarbons was tested under field conditions. Specifically, an evaluation was made of the effectiveness of deep rooting grasses, Johnsongrass and Canadian wild rye in the dissipation of TNT and PBB's in the soils freshly contaminated to an initial concentration of 10.17+/-1.
View Article and Find Full Text PDFThe vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in environmental conditions affecting the vadose zone. A mathematical model to simulate the water flow, and the fate and transport of recalcitrant contaminants was developed, which could be applied to various bioremediation methods such as phytoremediation and natural attenuation in the vadose zone.
View Article and Find Full Text PDFThe potential for phytoremediation of soil contaminated by trinitrotoluene (TNT) and 2,2',5,5'-tetrabromobiphenyl (PBB was used as a surrogate for PCBs) was examined in a 2-year study using box lysimeters under field conditions. The treatments were a warm season grass, Johnson grass, and a cool season grass, Canadian wildrye, and a rotation of Johnson grass and wildrye plus a fallow condition. The experiment was conducted using 12 large (1.
View Article and Find Full Text PDF