Here, Corynebacterium glutamicum ATCC13032 expressing Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440 was designed to produce 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid. Diverse parameters including cultivation and reaction temperatures, type of detergent, and pH were found to improve biotransformation efficiency. The optimal temperature of cultivation for the production of 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid using whole cells of recombinant C.
View Article and Find Full Text PDFObjective: To produce 10-ketostearic acid from oleic acid.
Results: Oleic acid was converted to 10-ketostearic acid by a recombinant Corynebacterium glutamicum ATCC 13032 expressing oleate hydratase from Stenotrophomonas maltophilia and a secondary alcohol dehydrogenase from Micrococcus luteus under the control of a synthetic constitutive promoter. Optimal conditions for 10-ketostearic acid production were pH 7.
The biocatalytic efficiency of recombinant Corynebacterium glutamicum ATCC 13032 expressing the secondary alcohol dehydrogenase of Micrococcus luteus NCTC2665 was studied. Recombinant C. glutamicum converts ricinoleic acid to a product, identified by gas chromatography/mass spectrometry as 12-ketooleic acid (12-oxo-cis-9-octadecenoic acid).
View Article and Find Full Text PDF