Publications by authors named "Kiing S Wong"

Plasma treatment constitutes an efficient method for chemical-free disinfection. A spray-based system for dispensing plasma-activated aerosols onto surfaces would facilitate disinfection of complex and/or hidden surfaces inaccessible to direct line-of-sight (for example, UV) methods. The complexity and size of current plasma generators (for example, plasma jet and cometary plasma systems)-which prohibit portable operation, together with the short plasma lifetimes, necessitate a miniaturized in situ technique in which a source can be simultaneously activated and administered on-demand onto surfaces.

View Article and Find Full Text PDF

We investigate a hybrid treatment-consisting of an atmospheric pressure plasma pretreatment, followed by an MHz surface acoustic waves (SAWs) treatment with either de-ionized (DI) water or plasma activated water (PAW)-on mung beans to accelerate the germination process, as mung bean sprout is one of the important food staples. For the early growth rate (after 320 min), we observe that the hybrid treatment with PAW can lead to approximately 217% higher moisture content for the treated beans when compared with that without hybrid treatment. Additionally, the hybrid-treated beans germinate in around 120 min, while the untreated beans germinate only in around 420 min, that is, 3.

View Article and Find Full Text PDF

The presence of reactive species in plasma-activated water is known to induce oxidative stresses in bacterial species, which can result in their inactivation. By integrating a microfludic chipscale nebulizer driven by surface acoustic waves (SAWs) with a low-temperature atmospheric plasma source, we demonstrate an efficient technique for in situ production and application of plasma-activated aerosols for surface disinfection. Unlike bulk conventional systems wherein the water is separately batch-treated within a container, we show in this work the first demonstration of continuous plasma-treatment of water as it is transported through a paper strip from a reservoir onto the chipscale SAW device.

View Article and Find Full Text PDF

Rayleigh surface acoustic waves (SAWs) have been demonstrated as a powerful and effective means for driving a wide range of microfluidic actuation processes. Traditionally, SAWs have been generated on piezoelectric substrates, although the cost of the material and the electrode deposition process makes them less amenable as low-cost and disposable components. As such, a "razor-and-blades" model that couples the acoustic energy of the SAW on the piezoelectric substrate through a fluid coupling layer and into a low-cost and, hence, disposable silicon superstrate on which various microfluidic processes can be conducted has been proposed.

View Article and Find Full Text PDF

Seeds, which are high in protein and essential nutrients, must go through a hydration process before consumption. The ability to rapidly increase water absorption can significantly reduce the soaking time as well as the amount of energy needed for cooking seeds. Many studies in the literature employ high-power (10 W) low-frequency (10 Hz) ultrasound; although their results are very promising where more than 100% increase in water content can be obtained between the treated and untreated seeds, the high-power and low-frequency ultrasound often causes acoustic cavitation under high intensity, which can severely disrupt the cell walls and damage the seeds.

View Article and Find Full Text PDF