Although pregabalin has been shown to have preclinical and clinical efficacy in neuropathic pain, the mechanism of its antinociceptive action is still unknown in other pain states. This study aimed to evaluate the antinociceptive effect of pregabalin and its underlying spinal mechanisms related to mitogen activated protein kinases (MAPKs) in neuron and microglia following intraplantar injection of zymosan model. Zymosan evoked thermal hyperalgesia, mechanical hyperalgesia, and mechanical allodynia starting from 1 h and persistent until 5 h post-injection, which were dose-dependently reversed by oral pretreatment of pregabalin (3, 10, and 30 mg/kg).
View Article and Find Full Text PDFPharmacol Biochem Behav
September 2014
Primary headache disorders, including migraine, are thought to be mediated by prolonged nociceptive activation of the trigeminal nucleus caudalis (TNC), but the precise mechanisms are poorly understood. Our past studies demonstrated that sigma-1 receptors (Sig-1R) facilitate spinal nociceptive transmission in several pain models. Based on these findings, this study asked if chronic activation of Sig-1R by intracisternal administration of the selective Sig-1R agonist, PRE084, produced TNC neuronal activation as a migraine trigger in rats.
View Article and Find Full Text PDF