Electrochemical doping of the n-type polymer poly(benzimidazobenzophenanthroline) (BBL) in contact with ionic liquids reveals a peak in the drain current () vs gate voltage () behavior, i.e., conductivity versus electron density.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
Due to their promising advantages over classical rigid devices, the development of display textiles has exciting potential for various fields, including sensor technology, healthcare, and communication. To realize display textiles, it is necessary to prepare light-emitting building blocks at the fiber level and then weave or knit them to form the desired textile structures. However, from a practical viewpoint, it is difficult to continuously weave functional fibers containing light-emitting devices using conventional textile technologies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Electrolyte-gated transistors (EGTs) operating at low voltages have attracted significant attention in widespread applications, including neuromorphic devices, nonvolatile memories, chemical/biosensors, and printed electronics. To increase the practicality of the EGTs in electronic circuits, systematic control of threshold voltage (), which determines the power consumption and noise margin of the circuits, is essential. In this study, we present a simple strategy for systematically tuning to almost half of the operating potential range of the EGT by controlling the electrochemical doping of electrolyte ions into organic p-type semiconductors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
Herein, a new concept of device architecture to fabricate fibrous light-emitting devices is demonstrated based on an electrochemiluminescence (ECL) material for an electronic textile system. A unique feature of this work is that instead of conventional semiconductor materials, such as organics, perovskites, and quantum dots for fibrous light emitting devices, a solid-state ECL electrolyte gel is employed as a light-emitting layer. The solid-state ECL gel is prepared from a precursor solution composed of matrix polymer, ionic liquid, and ECL luminophore.
View Article and Find Full Text PDFRed, green, and blue top-emission organic light-emitting diodes (RGB TOLEDs) suffer from white color change with viewing angle due to the microcavity effect, called white angular dependence (WAD). Great efforts are devoted by applying various kinds of hazy films, but they suffer from poor mechanical stability and optical transmittance. Herein, we introduce an air-gap-embedded hazy film (AEHF) to solve these problems and suppress WAD in RGB TOLEDs.
View Article and Find Full Text PDFLight-emitting transistors (LETs) have attracted a significant amount of interest as multifunctional building blocks for next-generation electronics and optoelectronic devices. However, it is challenging to obtain LETs with a high carrier mobility and uniform light-emission because the semiconductor channel should provide both the electrical charge transport and optical light-emission, and typical emissive semiconductors have low, imbalanced carrier mobilities. In this work, a novel device platform that adapts the electrochemiluminescence (ECL) principle in LETs, referred to as an ECL transistor (ECLT) is proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
High-temperature durability is critical for application of organic materials in electronic devices that operate in harsh environments. In this work, thermostable physically cross-linked polymer electrolytes, or thermostable physical ion gels, were successfully developed using crystallization-induced phase separation of semicrystalline polyamides (PAs) in an ionic liquid (IL). In these ion gels, phase-separated PA crystals act as network junctions and enable the ion gels to maintain their mechanical integrity up to 180 °C.
View Article and Find Full Text PDFThe development of p-channel devices with comparable electrical performances to their n-channel counterparts has been delayed due to the lack of p-type semiconductor materials and device optimization. In this present work, we successfully demonstrated p-channel inorganic thin-film transistors (TFTs) with high hole mobilities similar to the values of n-channel devices. To boost the device performance, the solution-processed copper iodide (CuI) semiconductor was gated by a solid polymer electrolyte.
View Article and Find Full Text PDFFor flexible organic light emitting diodes (OLEDs), roll-to-roll production enables low-cost fabrication and wide-ranging applications. Choosing an appropriate substrate material is one of the critical issues in the fabrication of flexible OLEDs. We demonstrated top-emitting OLEDs with a highly reflective distributed Bragg reflector (DBR) using a metal foil substrate.
View Article and Find Full Text PDFWe present an innovative approach to fabricate an extremely flat (EF) metal film which was done by depositing metal on an extremely flat mother substrate, then detaching the metal from the substrate. The detached flexible metal films had a roughness that was within 2% of the roughness of the mother substrate, so EFs with < 1 nm could be fabricated using the surface roughness transfer method. With quantitative analysis using synchrotron XPS, it was concluded that the chemical reaction of oxygen atoms with the metal film played a critical role in designing a peel-off system to get extremely flat metal films from the mother substrate.
View Article and Find Full Text PDFTwo types of thin-film electrochemical devices (electrolyte-gated transistors and electrochemical light-emitting cells) are demonstrated using area-controllable ionogel patches generated by transfer-stamping. For the successful transfer of ionogel patches on various target substrates, thermoreversible gelation by phase-separated polymer crystals within the ionogel is essential because it allows the gel to form a conformal contact with the acceptor substrate, thereby lowering the overall Gibbs energy of the system upon transfer of the ionogel. This crystallization-mediated stamping provides a much more efficient deposition route for producing thin films of ionically conductive high-capacitance solid ionogel electrolytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
A new type of physically cross-linked solid polymer electrolyte was demonstrated by using a poly(vinylidene fluoride) (PVDF) homopolymer in a room-temperature ionic liquid. The physical origins of gelation, specific capacitance, ionic conductivity, mechanical property, and capacitive charge modulation in organic thin-film electrochemical transistors were investigated systematically. Gelation occurs through bridging phase-separated homopolymer crystals by polymer chains in the composite electrolyte, thereby forming a rubbery network.
View Article and Find Full Text PDFNowadays, there has been an increasing demand to develop low-cost, disposable or reusable display devices to meet and maximize short-term user convenience. However, the disposable device has unfortunately not materialized yet due to the light-emitting materials and fabrication process issues. Here, we report sticker-type electrochemiluminescent (ECL) device using self-supporting, light-emitting gel electrolytes.
View Article and Find Full Text PDFThree primary colors, cyan, yellow, and green, are obtained from Ag nano-dot embedded organic light emitting diodes (OLEDs) by localized surface plasmon resonance (LSPR). By changing the thickness of the Ag film, the size and spacing of Ag nano-dots are controlled. The generated light from the emissive layer in the OLEDs interacts with the free electrons near the surface of the Ag nano-dots, which leads to LSPR absorption and scattering.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2015
We report the use of a continuous 1D-metallic microfibers web (MFW) as transparent electrode for organic solar cells (OSCs). The MFW electrode can be produced with a process that involves simple electrospinning and wet etching of metal thin film. Au MFW exhibits a maximum optical transmittance of 90.
View Article and Find Full Text PDFCorrection for 'Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power' by Byeong Uk Ye et al., Nanoscale, 2015, 7, 16189-16194.
View Article and Find Full Text PDFA simple fabrication route for ion gel nanofibers in a triboelectric nanogenerator was demonstrated. Using an electrospinning technique, we could fabricate a large-area ion gel nanofiber mat. The triboelectric nanogenerator was demonstrated by employing an ion gel nanofiber and the device exhibited an output power of 0.
View Article and Find Full Text PDFPrinting electrically functional liquid inks is a promising approach for achieving low-cost, large-area, additive manufacturing of flexible electronic circuits. To print thin-film transistors, a basic building block of thin-film electronics, it is important to have several options for printable electrode materials that exhibit high conductivity, high stability, and low-cost. Here we report completely aerosol jet printed (AJP) p- and n-type electrolyte-gated transistors (EGTs) using a variety of different electrode materials including highly conductive metal nanoparticles (Ag), conducting polymers (polystyrenesulfonate doped poly(3,4-ethylendedioxythiophene, PEDOT:PSS), transparent conducting oxides (indium tin oxide), and carbon-based materials (reduced graphene oxide).
View Article and Find Full Text PDFControlling the wavelength of electrodes within a desirable region is important in most optoelectronic devices for enhancing their efficiencies. Here, we investigated a full-color flexible transparent electrode using a wavelength matching layer (WML). The WMLs were able to adjust the optical-phase thickness of the entire electrode by controlling refractive indices and were capable of producing desirable colors in the visible band from 470 to 610 nm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2014
A facile fabrication route to pattern high-capacitance electrolyte thin films in electrolyte-gated transistors (EGTs) was demonstrated using a photoinitiated cross-linkable ABA-triblock copolymer ion gel. The azide groups of poly(styrene-r-vinylbenzylazide) (PS-N3) end-blocks can be chemically cross-linked via UV irradiation (λ = 254 nm) in the self-assembly of poly[(styrene-r-vinylbenzylazide)-b-ethylene oxide-b-(styrene-r-vinylbenzylazide)] (SOS-N3) triblock copolymer in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). Impedance spectroscopy and small-angle X-ray scattering revealed that ion transport and microstructure of the ion gel are not affected by UV cross-linking.
View Article and Find Full Text PDFPrinted low-voltage complementary inverters based on electrolyte gated transistors are demonstrated. The printed complementary inverters showed gain of 18 and power dissipation below 10 nW. 5-stage ring oscillators operate at 2 V with an oscillation frequency of 2.
View Article and Find Full Text PDFWe report performance optimization and stability analysis of aerosol-jet-printed electrolyte-gated transistors (EGTs) based on the polymer semiconductor poly(3-hexylthiophene) (P3HT). EGTs were optimized with respect to printed P3HT thickness and the completed device annealing temperature. EGTs with relatively thin P3HT films (∼50 nm) annealed at 120 °C have the best performance and display an unusual combination of metrics including sub-1-V operation, ON/OFF current ratios of 10(6), OFF currents of <10(-10) A (<10(-6) A cm(-2)), saturation hole mobilities of 1.
View Article and Find Full Text PDFPrinted, flexible sub-2 V ZnO electrolyte gated transistors (EGTs) are demonstrated. ZnO EGTs with high-capacitance ion-gel gate insulators are printed on a kapton substrate and the devices exhibit high electron mobility (1.61 cm(-2) V(-1) s(-1) ), low operation voltage (<2 V), and good electrical/mechanical stabilities.
View Article and Find Full Text PDFHere we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for organic and printed electronics. EGTs employ a high capacitance electrolyte as the gate insulator; the high capacitance increases drive current, lowers operating voltages, and enables new transistor architectures. Although the use of electrolytes in electronics is an old concept going back to the early days of the silicon transistor, new printable, fast-response polymer electrolytes are expanding the potential applications of EGTs in flexible, printed digital circuits, rollable displays, and conformal bioelectronic sensors.
View Article and Find Full Text PDFUsing dielectric-constant (ε) matching of metal-oxide (MO) with Ag film, highly transparent MO/Ag electrodes are demonstrated. At the large-ε MO/Ag interface, surface-plasmon was suppressed and the film showed increased optical-transmittance (>70%). OLEDs fabricated using large-ε MO/Ag electrodes show 1.
View Article and Find Full Text PDF