Publications by authors named "Kiev S Ly"

The preclinical characterization of novel octahydropyrrolo[3,4-c]pyrroles that are potent and selective orexin-2 antagonists is described. Optimization of physicochemical and DMPK properties led to the discovery of compounds with tissue distribution and duration of action suitable for evaluation in the treatment of primary insomnia. These selective orexin-2 antagonists are proven to promote sleep in rats, and this work ultimately led to the identification of a compound that progressed into human clinical trials for the treatment of primary insomnia.

View Article and Find Full Text PDF

The preclinical characterization of novel phenyl(piperazin-1-yl)methanones that are histamine H3 receptor antagonists is described. The compounds described are high affinity histamine H3 antagonists. Optimization of the physical properties of these histamine H3 antagonists led to the discovery of several promising lead compounds, and extensive preclinical profiling aided in the identification of compounds with optimal duration of action for wake promoting activity.

View Article and Find Full Text PDF

The pre-clinical characterization of novel aryloxypyridine amides that are histamine H(3) receptor antagonists is described. These compounds are high affinity histamine H(3) ligands that penetrate the CNS and occupy the histamine H(3) receptor in rat brain. Several compounds were extensively profiled pre-clinically leading to the identification of two compounds suitable for nomination as development candidates.

View Article and Find Full Text PDF

We have recently completed the synthesis of 1-[2-(4-cyclobutyl-[1,4]diazepane-1-carbonyl)-4-(3-fluoro-phenoxy)-pyrrolidin-1-yl]-ethanone, a hydroxyproline-based H(3) receptor antagonist, on 100 g scale. The synthesis proceeds through four steps and route selection was driven by a desire to minimize the cost-of-goods. Naturally occurring trans-4-hydroxy-L-proline was chosen as the precursor to the target's core, which necessitated an inversion at both stereogenic centers.

View Article and Find Full Text PDF

Pre-clinical characterization of novel substituted pyrrolidines that are high affinity histamine H(3) receptor antagonists is described. These compounds efficiently penetrate the CNS and occupy the histamine H(3) receptor in rat brain following oral administration. One compound, (2S,4R)-1-[2-(4-cyclobutyl-[1,4]diazepane-1-carbonyl)-4-(3-fluoro-phenoxy)-pyrrolidin-1-yl]-ethanone, was extensively profiled and shows promise as a potential clinical candidate.

View Article and Find Full Text PDF

A novel series of imidazole containing histamine H(3) receptor ligands were investigated and found to be potent functional antagonists. After improving the stability of these molecules towards liver microsomes, these compounds were found to have no appreciable affinity for CYP P450s. Subsequent in vivo experiments showed significant brain uptake of (4-chloro-phenyl)-[2-(1-isopropyl-piperidin-4-ylmethoxy)-3-methyl-3H-imidazol-4-yl]-methanone 22.

View Article and Find Full Text PDF

The synthesis and biological activity of a new series of 2-aryloxymethylmorpholine histamine H(3) antagonists is described. The new compounds are high affinity histamine H(3) ligands that penetrate the CNS and occupy the histamine H(3) receptor in rat brain.

View Article and Find Full Text PDF

The synthesis and biological activity of a new series of piperazine and diazepane amides is described. The new compounds are high affinity histamine H3 ligands and serotonin reuptake inhibitors.

View Article and Find Full Text PDF

A series of novel tetrahydronaphthyridine-based histamine H(3) ligands that have serotonin reuptake transporter inhibitor activity is described. The 1,2,3,4-tetrahydro-2,6-naphthyridine scaffold is assembled via the addition of a nitrostyrene to a metalated pyridine followed by reduction and cyclization to form the naphthyridine. In vitro biological data for these novel compounds are discussed.

View Article and Find Full Text PDF

A series of novel 4-aryl-1,2,3,4-tetrahydroisoquinoline-based histamine H(3) ligands that also have serotonin reuptake transporter inhibitor activity is described. The synthesis, in vitro biological data, and select pharmacokinetic data for these novel compounds are discussed.

View Article and Find Full Text PDF

A series of tetrahydroisoquinolines acting as dual histamine H3/serotonin transporter ligands is described. A highly regio-selective synthesis of the tetrahydroisoquinoline core involving acid mediated ring-closure of an acetophenone intermediate followed by reduction with NaCNBH3 was developed. In vitro and in vivo data are discussed.

View Article and Find Full Text PDF
Article Synopsis
  • Three series of H(4) receptor ligands have been created and their effectiveness tested through various assays.
  • Modifying small lipophilic groups on specific positions of the compounds improved their activity in competitive binding tests.
  • Two compounds, indole 8 and benzimidazole 40, emerged as strong H(4) antagonists and showed promise in further studies related to mast cell and eosinophil movement.
View Article and Find Full Text PDF

Following the discovery of the human histamine H4 receptor, a high throughput screen of our corporate compound collection identified compound 6 as a potential lead. Investigation of the SAR resulted in the discovery of novel compounds 10e and 10l, which are the first potent and selective histamine H4 receptor antagonists to be described.

View Article and Find Full Text PDF