Publications by authors named "Kieran Short"

Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models.

View Article and Find Full Text PDF

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models.

View Article and Find Full Text PDF

Background: Low nephron number has a direct impact on the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood.

Methods: We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development.

View Article and Find Full Text PDF

The aims of the current study were to investigate the use of dRPE with academy soccer players to: 1) examine the effect of bio-banded and non-bio-banded maturity groups within SSG on players dRPE; 2) describe the multivariate relationships between dRPE measures investigating the sources of intra and inter-individual variation, and the effects of maturation and bio-banding. Using 32 highly trained under (U) 12 to U14 soccer players (mean (SD) age 12.9 (0.

View Article and Find Full Text PDF

Branching morphogenesis is an integral developmental mechanism central to the formation of a range of organs including the kidney, lung, pancreas and mammary gland. The ramified networks of epithelial tubules it establishes are critical for the processes of secretion, excretion and exchange mediated by these tissues. In the kidney, branching serves to establish the collecting duct system that transports urine from the nephrons into the renal pelvis, ureter and finally the bladder.

View Article and Find Full Text PDF

Laminin alpha 5 (LAMA5) is a member of a large family of proteins that trimerise and then polymerise to form a central component of all basement membranes. Consequently, the protein plays an instrumental role in shaping the normal development of the kidney, skin, neural tube, lung and limb, and many other organs and tissues. Pathogenic mutations in some laminins have been shown to cause a range of largely syndromic conditions affecting the competency of the basement membranes to which they contribute.

View Article and Find Full Text PDF

Adamts18 encodes a secreted metalloprotease restricted to branch-tip progenitor pools directing the morphogenesis of multiple mammalian organs. Adamts18 was targeted to explore a potential role in branching morphogenesis. In the kidney, an arborized collecting system develops through extensive branching morphogenesis of an initial epithelial outgrowth of the mesonephric duct, the ureteric bud.

View Article and Find Full Text PDF

A normal endowment of nephrons in the mammalian kidney requires a balance of nephron progenitor self-renewal and differentiation throughout development. Here, we provide evidence for a novel action of ureteric branch tip-derived Wnt11 in progenitor cell organization and interactions within the nephrogenic niche, ultimately determining nephron endowment. In mutants, nephron progenitors dispersed from their restricted niche, intermixing with interstitial progenitors.

View Article and Find Full Text PDF

Branching morphogenesis of the ureteric bud is integral to kidney development; establishing the collecting ducts of the adult organ and driving organ expansion via peripheral interactions with nephron progenitor cells. A recent study suggested that termination of tip branching within the developing kidney involved stochastic exhaustion in response to nephron formation, with such a termination event representing a unifying developmental process evident in many organs. To examine this possibility, we have profiled the impact of nephron formation and maturation on elaboration of the ureteric bud during mouse kidney development.

View Article and Find Full Text PDF

Metanephric kidney development is orchestrated by the iterative branching morphogenesis of the ureteric bud. We describe an underlying patterning associated with the ramification of this structure and show that this pattern is conserved between developing kidneys, in different parts of the organ and across developmental time. This regularity is associated with a highly reproducible branching asymmetry that is consistent with locally operative growth mechanisms.

View Article and Find Full Text PDF

The kidney develops as an outgrowth of the epithelial nephric duct known as the ureteric bud, in a position specified by a range of rostral and caudal factors which serve to ensure two kidneys form in the appropriate positions in the body. At its simplest level, kidney development can be viewed as the process by which this single bud then undergoes a process of arborisation to form a complex connected network of ducts which will serve to drain urine from the nephrons in the adult organ. The process of bud elaboration is dictated by factors expressed by both the bud itself and by surrounding cells of the metanephric mesenchyme which control cell division and bifurcation.

View Article and Find Full Text PDF

The mammalian kidney develops from a simple epithelial bud to an arborized network of tubules, which are fated to form the ureter, renal pelvis and collecting ducts. This process of ductal elaboration is achieved through an ancient developmental mechanism known as branching morphogenesis that is widely employed in glandular organs, the vasculature and lungs. It breaks up large solid tissues facilitating secretion, excretion and gas exchange, depending on the tissue.

View Article and Find Full Text PDF

Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis.

View Article and Find Full Text PDF

Sexual dimorphism is a prominent feature of renal physiology and as a consequence, it differentially affects predisposition to many adult kidney diseases. Furthermore the left and right kidneys differ in terms of their position, size and involvement in congenital malformations of the urogenital tract. We set out to determine whether differences in the program of branching morphogenesis that establishes the basic architecture of the kidney were apparent with respect to either sex or laterality in mouse embryonic kidneys.

View Article and Find Full Text PDF

Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality.

View Article and Find Full Text PDF

Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structural variation in mammary ductal development, and determined if these QTL correlated with genomic intervals conferring BrCa susceptibility in humans.

View Article and Find Full Text PDF

Developmental branching morphogenesis establishes organ architecture, and it is driven by iterative interactions between epithelial and mesenchymal progenitor cell populations. We describe an approach for analyzing this interaction and how it contributes to organ development. After initial in vivo cell labeling with the nucleoside analog 5-ethynyl-2'-deoxyuridine (EdU) and tissue-specific antibodies, optical projection tomography (OPT) and confocal microscopy are used to image the developing organ.

View Article and Find Full Text PDF

Bifurcating developmental branching morphogenesis gives rise to complex organs such as the lung and the ureteric tree of the kidney. However, a few quantitative methods or tools exist to compare and distinguish, at a structural level, the critical features of these important biological systems. Here we develop novel graph alignment techniques to quantify the structural differences of rooted bifurcating trees and demonstrate their application in the analysis of developing kidneys from in normal and mutant mice.

View Article and Find Full Text PDF

Although kidneys of equal size can vary 10-fold in nephron number at birth, discovering what regulates such variation has been hampered by a lack of quantitative parameters defining kidney development. Here we report a comprehensive, quantitative, multiscale analysis of mammalian kidney development in which we measure changes in cell number, compartment volumes, and cellular dynamics across the entirety of organogenesis, focusing on two key nephrogenic progenitor populations: the ureteric epithelium and the cap mesenchyme. In doing so, we describe a discontinuous developmental program governed by dynamic changes in interactions between these key cellular populations occurring within a previously unappreciated structurally stereotypic organ architecture.

View Article and Find Full Text PDF

Purkinje neurons are a sensitive and specialised cell type important for fine motor movement and coordination. Purkinje cell damage manifests as motor incoordination and ataxia - a prominent feature of many human disorders including spinocerebellar ataxia and Huntington's disease. A correlation between Purkinje degeneration and excess cerebellar levels of tissue-type plasminogen activator (tPA) has been observed in multiple genetically-distinct models of ataxia.

View Article and Find Full Text PDF

There is strong evidence from human and animal models that exposure to maternal hyperglycemia during in utero development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques.

View Article and Find Full Text PDF

Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it.

View Article and Find Full Text PDF

Optical Projection Tomography (OPT) is an imaging technique, which has proven to be ideally suited to the observation and quantification of kidney development in rodents. Unlike confocal microscopy systems, OPT is capable of imaging the organ in toto across a long window of embryonic development at sufficient resolution to capture relative changes in branching dynamics, pelvis development, and nephrogenesis. Here, we describe how to image kidneys by OPT, and initial steps to quantify kidney development from this data.

View Article and Find Full Text PDF

During lymphangiogenesis in the mammalian embryo, a subset of vascular endothelial cells in the cardinal veins is reprogrammed to adopt a lymphatic endothelial fate. The prevailing model of lymphangiogenesis contends that these lymphatic precursor cells migrate away from the cardinal veins and reassemble peripherally as lymph sacs from which a lymphatic vasculature is generated. However, this model fails to account for a number of observations that, as a result, have remained anecdotal.

View Article and Find Full Text PDF

The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia.

View Article and Find Full Text PDF