Acetogens are promising cell factories for producing fuels and chemicals from waste feedstocks via gas fermentation, but quantitative characterization of carbon, energy, and redox metabolism is required to guide their rational metabolic engineering. Here, we explore acetogen gas fermentation using physiological, metabolomics, and transcriptomics data for Clostridium autoethanogenum steady-state chemostat cultures grown on syngas at various gas-liquid mass transfer rates. We observe that C.
View Article and Find Full Text PDF