Mycobacterium bovis (M. bovis) causes bovine tuberculosis (bTB). The challenges in controlling and eradicating this zoonotic disease are compounded by our incomplete understanding of the host immune response.
View Article and Find Full Text PDFInvestigations into the role of vitamin D (vitD) in the immune response of cattle are limited. The objectives of this study were therefore to investigate the association between circulating vitD concentration, tuberculosis (TB) vaccination, and infection outcomes in 24 dairy calves (<8 wk old) that were housed throughout and fed a BW-based allowance. The study design incorporated 2 phases: vaccination (experimental wk 0-52) and experimental infection phase (wk 52-65).
View Article and Find Full Text PDFBovine respiratory disease (BRD) is a leading cause of mortality and compromised welfare in bovines. It is a polymicrobial syndrome resulting from a complex interplay of viral and bacterial pathogens with environmental factors. Despite the availability of vaccines, incidence and severity in young calves remains unabated.
View Article and Find Full Text PDFβ-Defensins are peptides with antimicrobial roles, characterized by a conserved tertiary structure. Beyond antimicrobial functions, they exhibit diverse roles in both the immune response and fertility, including involvement in sperm maturation and function. Copy number variation (CNV) of β-defensin genes is extensive across mammals, including cattle, with possible implications for reproductive traits and disease resistance.
View Article and Find Full Text PDFBovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), represents a significant problem for the agriculture industry as well as posing a risk for human health. Current diagnostic tests for bTB target the cell-mediated immune (CMI) response to infection with M.
View Article and Find Full Text PDFBovine tuberculosis (bTB), caused by infection with , continues to cause significant issues for the global agriculture industry as well as for human health. An incomplete understanding of the host immune response contributes to the challenges of control and eradication of this zoonotic disease. In this study, high-throughput bulk RNA sequencing (RNA-seq) was used to characterise differential gene expression in γδ T cells - a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms.
View Article and Find Full Text PDFVitamin D deficiency at birth, followed by prolonged insufficiency in early life may predispose bovine calves to infection and disease. However, the effects of vitamin D levels on innate immunity are unclear due to the lack of long-term supplementation trials in vivo and reliable approaches for reproducibly assessing immune function. Here, a standardized whole blood immunophenotyping assay was used to compare innate immune responses to infection relevant ligands (LPS, Pam3CSK4 and R848) between Holstein-Friesian calves supplemented with vitamin D (n = 12) from birth until 7 months of age and control calves (n = 10) raised on an industry standard diet.
View Article and Find Full Text PDFDespite stringent quality control checks, some bulls with apparently normal semen quality yield lower than expected pregnancy rates. This study profiled the transcriptome and performed histological analysis of the bovine uterus in response to sperm from high-fertility (HF) and low-fertility (LF) bulls. Postmortem uterine biopsies and uterine explants were collected from heifers 12 h after a fixed time artificial insemination (AI) to a synchronized estrus with frozen-thawed semen from five HF (fertility rate 4.
View Article and Find Full Text PDFTransl Anim Sci
January 2023
Modern technological agriculture emerged in the 20th century and has expanded into a global enterprise occupying approximately 38% of the Earth's land area and accounting for over 40% of the world's workforce. The United Nations Food and Agriculture Organization estimates that to feed a world population of 9-billion people in 2050 will require an almost doubling of overall food production, including meat, dairy, and egg production over 2010 levels. However, our collective ability to meet this demand cannot be taken for granted.
View Article and Find Full Text PDFVitamin D deficiency (VDD) is associated with enhanced susceptibility to multiple respiratory diseases in humans, including tuberculosis. However, the consequences of VDD for disease susceptibility in calves are unknown. Previously we developed a model to drive divergent circulating 25OHD concentrations in cattle, where animals were supplemented with vitamin D (vit D) from birth to 7 months of age.
View Article and Find Full Text PDFA growing appreciation is emerging of the beneficial role of vitamin D for health and resistance against infectious diseases, including tuberculosis. However, research has predominantly focused on murine and human species and functional data in bovines is limited. Therefore, the objective of this study was to assess the microbicidal activity and immunoregulatory effect of the vitamin D metabolite 1,25(OH)D on bovine peripheral blood leukocytes (PBL) in response to Mycobacterium bovis BCG (BCG) infection using a combination of functional assays and gene expression profiling.
View Article and Find Full Text PDFVitamin D has a well-established role in regulating the intestinal absorption of minerals but its association with immunity has not been extensively explored in livestock. Although an optimal circulating concentration of 30 ng/ml 25-hydroxycholecalciferol (25(OH)D) is proposed for immune function, it is unknown if this vitamin D concentration is sufficient, particularly for cows under a pasture-based, spring-calving dairy production system. The objectives of this retrospective analysis were to assess circulating vitamin D concentrations in a total of 843 bio-banked serum samples from Holstein-Friesian dairy cows enrolled from 12 spring-calving, pasture-based dairy farms in Ireland.
View Article and Find Full Text PDFWorldwide, cervical artificial insemination using frozen-thawed semen yields low pregnancy rates. The only exception to this is in Norway, where vaginal insemination with frozen-thawed semen yields pregnancy rates in excess of 60% and which has been attributed to the specific ewe breed used. Our previous work demonstrated differences in cervical gene expression at the follicular phase of the estrous cycle in ewe breeds with known differences in pregnancy rates.
View Article and Find Full Text PDFBackground: Cervical artificial insemination (AI) with frozen-thawed semen results in unacceptably low pregnancy rates internationally. The exception is in Norway, where vaginal deposition of frozen-thawed semen to a natural oestrous routinely yields pregnancy rates in excess of 70%. Previous studies by our group has demonstrated that this is due to differences in cervical sperm transport.
View Article and Find Full Text PDFSialic acid occupies terminal positions on O-glycans of cervical mucins, where they contribute to the increased viscosity of mucin thereby regulating sperm transport. This study characterized the sialylated cervical mucins from follicular phase mucus of six European ewe breeds with known differences in pregnancy rates following cervical artificial insemination (AI) using frozen-thawed semen at both synchronized and natural estrus cycles. These were Suffolk (low fertility) and Belclare (medium fertility) in Ireland, Ile de France and Romanov (both with medium fertility) in France, and Norwegian White Sheep (NWS) and Fur (both with high fertility) in Norway.
View Article and Find Full Text PDFBackground: The outcome of cervical artificial insemination (AI) with frozen-thawed semen in sheep is limited by the inability of sperm to traverse the cervix of some ewe breeds. Previous research has demonstrated that cervical sperm transport is dependent on ewe breed, as sperm can traverse the cervix in greater numbers in some higher fertility ewe breeds. However, the molecular mechanisms underlying ewe breed differences in sperm transport through the cervix remain unknown.
View Article and Find Full Text PDFA role for vitamin D in the immune system is emerging from human research but data in the bovine is limited. In the current study, 48 Holstein-Friesian calves were randomly assigned to one of 4 groups designed to expose calves to divergent vitamin D levels for a 7 month period and to determine its effects on circulating immunity in young calves. Concentrations of circulating 25-hydroxyvitamin D (25OHD) was measured in serum using a commercial ELISA with validated bovine standards.
View Article and Find Full Text PDFJohne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with subspecies (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease.
View Article and Find Full Text PDFCattle vary in their susceptibility to infection and immunopathology, but our ability to measure and longitudinally profile immune response variation is limited by the lack of standardized immune phenotyping assays for high-throughput analysis. Here we report longitudinal innate immune response profiles in cattle using a low-blood volume, whole blood stimulation system-the ImmunoChek (IChek) assay. By minimizing cell manipulation, our standardized system minimizes the potential for artefactual results and enables repeatable temporal comparative analysis in cattle.
View Article and Find Full Text PDFInterleukin-8 (IL-8) is a potent inflammatory chemokine, and two gene promoter haplotypes have been previously reported to segregate in cattle populations. Our earlier work showed how these divergent IL8 genotypes influence IL-8 expression and other immune response parameters at a systemic level. Here we extend that work to characterise the influence of haplotype on the local immune response - in primary bovine dermal fibroblasts.
View Article and Find Full Text PDFInterleukin-8 (IL-8) is an inflammatory chemokine released during the primary innate immune response to recruit neutrophils to the site of infection. Two distinct gene promoter haplotypes have been previously reported to segregate in the Holstein-Friesian breed (IL8-h1 and IL8-h2). Our earlier work showed how these divergent IL8 haplotypes influence IL-8 concentration and other immune response parameters at a systemic level.
View Article and Find Full Text PDFInterleukin 8 (IL8) is a major mediator of the innate immune response. Polymorphisms in this gene are associated with susceptibility to inflammatory disease in humans. Two major promoter polymorphic haplotypes (IL8-h1 and IL8-h2) segregating in cattle populations have shown a significant effect on the immune response profile in calves but their implications for transition cow immunity have not been established.
View Article and Find Full Text PDFAberdeen Angus calves were sacrificed from immediately post-birth up to 96 days of age (DOA) and ileal samples were collected for microbial, histological and immunological analyses. Firmicutes bacteria were established immediately in the ileum of calves after birth and remained the dominant phyla at all time points from birth until 96 DOA. Temporal shifts in phyla reflected significantly increased Bacteroidetes at birth followed by temporal increases in Actinobacteria abundance over time.
View Article and Find Full Text PDF